Xi Yang, Chun Feng, Donghui Jiang, Xin Xu, Yingying Zhang, Jin Wang, Xiaoguang He
{"title":"circ0005027作为ceRNA通过调节miR-548c-3p/CDH1轴影响下咽鳞状细胞癌的恶性生物学行为","authors":"Xi Yang, Chun Feng, Donghui Jiang, Xin Xu, Yingying Zhang, Jin Wang, Xiaoguang He","doi":"10.1007/s10528-023-10570-y","DOIUrl":null,"url":null,"abstract":"<div><p>Hypopharyngeal squamous cell carcinoma (HSCC) is a malignant tumor of head and neck. It was verified that circ0005027 was downregulated in HSCC tissues. Here, we aimed to investigate the function and specific regulatory mechanism of circ0005027 in HSCC. Ten pairs tissues of HSCC and adjacent para-cancer were collected. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) measured circ0005027, miR-548c-3p, and Cadherin 1 (CDH1) mRNA expression. CCK-8 analyzed cell proliferation viability. Flow cytometry assay detected cell cycle and apoptosis rate. Clonal formation assay measured the clonal ability. Transwell detected cell invasion ability. Western blot was performed to detect CDH1, LAST1, p-LAST1, MST1, p-MST1, YAP1, p-YAP1, TAZ and p-TAZ protein level. Dual-luciferase, RIP and RNA pull-down assay identified the target relationship among circ0005027, miR-548c-3p and CDH1. circ0005027 was decreased in tissues and FaDu cells of HSCC. Overexpression of circ0005027 inhibited cell viability, G1-S transition, clonal formation, and invasion and increased cell apoptosis. circ0005027 acted as a ceRNA and decreased circ0005027 enhanced the malignant process of FaDu cells through sponging miR-548c-3p and inhibiting CDH1 expression. Overexpression of CDH1 activated YAP1/TAZ pathway and inhibited the growth of HSCC in vitro. circ0005027 might act as a potential biomarker for the progression and prognosis prediction in HSCC by regulating miR-548c-3p/CDH1/ YAP1/TAZ signaling pathway.</p></div>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"circ0005027 Acting as a ceRNA Affects the Malignant Biological Behavior of Hypopharyngeal Squamous Cell Carcinoma by Modulating miR-548c-3p/CDH1 Axis\",\"authors\":\"Xi Yang, Chun Feng, Donghui Jiang, Xin Xu, Yingying Zhang, Jin Wang, Xiaoguang He\",\"doi\":\"10.1007/s10528-023-10570-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hypopharyngeal squamous cell carcinoma (HSCC) is a malignant tumor of head and neck. It was verified that circ0005027 was downregulated in HSCC tissues. Here, we aimed to investigate the function and specific regulatory mechanism of circ0005027 in HSCC. Ten pairs tissues of HSCC and adjacent para-cancer were collected. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) measured circ0005027, miR-548c-3p, and Cadherin 1 (CDH1) mRNA expression. CCK-8 analyzed cell proliferation viability. Flow cytometry assay detected cell cycle and apoptosis rate. Clonal formation assay measured the clonal ability. Transwell detected cell invasion ability. Western blot was performed to detect CDH1, LAST1, p-LAST1, MST1, p-MST1, YAP1, p-YAP1, TAZ and p-TAZ protein level. Dual-luciferase, RIP and RNA pull-down assay identified the target relationship among circ0005027, miR-548c-3p and CDH1. circ0005027 was decreased in tissues and FaDu cells of HSCC. Overexpression of circ0005027 inhibited cell viability, G1-S transition, clonal formation, and invasion and increased cell apoptosis. circ0005027 acted as a ceRNA and decreased circ0005027 enhanced the malignant process of FaDu cells through sponging miR-548c-3p and inhibiting CDH1 expression. Overexpression of CDH1 activated YAP1/TAZ pathway and inhibited the growth of HSCC in vitro. circ0005027 might act as a potential biomarker for the progression and prognosis prediction in HSCC by regulating miR-548c-3p/CDH1/ YAP1/TAZ signaling pathway.</p></div>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10528-023-10570-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10528-023-10570-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
circ0005027 Acting as a ceRNA Affects the Malignant Biological Behavior of Hypopharyngeal Squamous Cell Carcinoma by Modulating miR-548c-3p/CDH1 Axis
Hypopharyngeal squamous cell carcinoma (HSCC) is a malignant tumor of head and neck. It was verified that circ0005027 was downregulated in HSCC tissues. Here, we aimed to investigate the function and specific regulatory mechanism of circ0005027 in HSCC. Ten pairs tissues of HSCC and adjacent para-cancer were collected. Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) measured circ0005027, miR-548c-3p, and Cadherin 1 (CDH1) mRNA expression. CCK-8 analyzed cell proliferation viability. Flow cytometry assay detected cell cycle and apoptosis rate. Clonal formation assay measured the clonal ability. Transwell detected cell invasion ability. Western blot was performed to detect CDH1, LAST1, p-LAST1, MST1, p-MST1, YAP1, p-YAP1, TAZ and p-TAZ protein level. Dual-luciferase, RIP and RNA pull-down assay identified the target relationship among circ0005027, miR-548c-3p and CDH1. circ0005027 was decreased in tissues and FaDu cells of HSCC. Overexpression of circ0005027 inhibited cell viability, G1-S transition, clonal formation, and invasion and increased cell apoptosis. circ0005027 acted as a ceRNA and decreased circ0005027 enhanced the malignant process of FaDu cells through sponging miR-548c-3p and inhibiting CDH1 expression. Overexpression of CDH1 activated YAP1/TAZ pathway and inhibited the growth of HSCC in vitro. circ0005027 might act as a potential biomarker for the progression and prognosis prediction in HSCC by regulating miR-548c-3p/CDH1/ YAP1/TAZ signaling pathway.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.