{"title":"湍流中气泡和液滴的变形和破裂","authors":"Rui Ni","doi":"10.1146/annurev-fluid-121021-034541","DOIUrl":null,"url":null,"abstract":"Fragmentation of bubbles and droplets in turbulence produces a dispersed phase spanning a broad range of scales, encompassing everything from droplets in nanoemulsions to centimeter-sized bubbles entrained in breaking waves. Along with deformation, fragmentation plays a crucial role in enhancing interfacial area, with far-reaching implications across various industries, including food, pharmaceuticals, and ocean engineering. However, understanding and modeling these processes are challenging due to the complexity of anisotropic and inhomogeneous turbulence typically involved, the unknown residence time in regions with different turbulence intensities, and difficulties arising from the density and viscosity ratios. Despite these challenges, recent advances have provided new insights into the underlying physics of deformation and fragmentation in turbulence. This review summarizes existing works in various fields, highlighting key results and uncertainties, and examining the impact on turbulence modulation, drag reduction, and heat and mass transfer.Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":"76 1","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deformation and Breakup of Bubbles and Drops in Turbulence\",\"authors\":\"Rui Ni\",\"doi\":\"10.1146/annurev-fluid-121021-034541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fragmentation of bubbles and droplets in turbulence produces a dispersed phase spanning a broad range of scales, encompassing everything from droplets in nanoemulsions to centimeter-sized bubbles entrained in breaking waves. Along with deformation, fragmentation plays a crucial role in enhancing interfacial area, with far-reaching implications across various industries, including food, pharmaceuticals, and ocean engineering. However, understanding and modeling these processes are challenging due to the complexity of anisotropic and inhomogeneous turbulence typically involved, the unknown residence time in regions with different turbulence intensities, and difficulties arising from the density and viscosity ratios. Despite these challenges, recent advances have provided new insights into the underlying physics of deformation and fragmentation in turbulence. This review summarizes existing works in various fields, highlighting key results and uncertainties, and examining the impact on turbulence modulation, drag reduction, and heat and mass transfer.Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":50754,\"journal\":{\"name\":\"Annual Review of Fluid Mechanics\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":25.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-fluid-121021-034541\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-121021-034541","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Deformation and Breakup of Bubbles and Drops in Turbulence
Fragmentation of bubbles and droplets in turbulence produces a dispersed phase spanning a broad range of scales, encompassing everything from droplets in nanoemulsions to centimeter-sized bubbles entrained in breaking waves. Along with deformation, fragmentation plays a crucial role in enhancing interfacial area, with far-reaching implications across various industries, including food, pharmaceuticals, and ocean engineering. However, understanding and modeling these processes are challenging due to the complexity of anisotropic and inhomogeneous turbulence typically involved, the unknown residence time in regions with different turbulence intensities, and difficulties arising from the density and viscosity ratios. Despite these challenges, recent advances have provided new insights into the underlying physics of deformation and fragmentation in turbulence. This review summarizes existing works in various fields, highlighting key results and uncertainties, and examining the impact on turbulence modulation, drag reduction, and heat and mass transfer.Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 56 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.