副热带北大西洋有机物呼吸化学计量的深度变化及其对全球氧循环的意义

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Skylar D. Gerace, Adam J. Fagan, François W. Primeau, Allison R. Moreno, Paul Lethaby, Rodney J. Johnson, Adam C. Martiny
{"title":"副热带北大西洋有机物呼吸化学计量的深度变化及其对全球氧循环的意义","authors":"Skylar D. Gerace,&nbsp;Adam J. Fagan,&nbsp;François W. Primeau,&nbsp;Allison R. Moreno,&nbsp;Paul Lethaby,&nbsp;Rodney J. Johnson,&nbsp;Adam C. Martiny","doi":"10.1029/2023GB007814","DOIUrl":null,"url":null,"abstract":"<p>Climate warming likely drives ocean deoxygenation, but models still cannot fully explain observed declines in oxygen. One unconstrained parameter is the oxygen demand per carbon respired for complete remineralization of organic matter (i.e., the total respiration quotient, <i>r</i><sub>Σ-O2:C</sub>). Here, we tested if <i>r</i><sub>Σ-O2:C</sub> declined with depth by quantifying suspended concentrations of particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphorus (POP), particulate chemical oxygen demand (PCOD), and total oxygen demand (Σ-O<sub>2</sub> = PCOD + 2PON) down to a depth of 1,000 m in the Sargasso Sea. The respiration quotient (<i>r</i><sub>-O2:C</sub> = PCOD:POC) and total respiration quotient (<i>r</i><sub>Σ-O2:C</sub> = Σ-O<sub>2</sub>:POC) declined with depth in the euphotic zone, but increased vertically in the disphotic zone. C:N and <i>r</i><sub>Σ-O2:N</sub> changed with depth, but surface values were similar to values at 1,000 m. C:P, N:P, and <i>r</i><sub>Σ-O2:P</sub> mostly decreased with depth. We hypothesize that <i>r</i><sub>Σ-O2:C</sub> is linked to multiple environmental factors that change with depth, such as phytoplankton community structure and the preferential production/removal of biomolecules. Using a global model, we show that the global distribution of dissolved oxygen is equally sensitive to <i>r</i><sub>-O2:C</sub> varying between surface biomes versus vertically during remineralization. Additionally, adjusting the model's <i>r</i><sub>-O2:C</sub> with depth to match our observations resulted in less dissolved oxygen throughout the upper ocean. Most of this loss occurred in the tropical Pacific thermocline, where oxygen models underestimate deoxygenation the most. This study aims to improve our understanding of biological oxygen demand as warming-induced deoxygenation continues.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"37 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depth Variance of Organic Matter Respiration Stoichiometry in the Subtropical North Atlantic and the Implications for the Global Oxygen Cycle\",\"authors\":\"Skylar D. Gerace,&nbsp;Adam J. Fagan,&nbsp;François W. Primeau,&nbsp;Allison R. Moreno,&nbsp;Paul Lethaby,&nbsp;Rodney J. Johnson,&nbsp;Adam C. Martiny\",\"doi\":\"10.1029/2023GB007814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate warming likely drives ocean deoxygenation, but models still cannot fully explain observed declines in oxygen. One unconstrained parameter is the oxygen demand per carbon respired for complete remineralization of organic matter (i.e., the total respiration quotient, <i>r</i><sub>Σ-O2:C</sub>). Here, we tested if <i>r</i><sub>Σ-O2:C</sub> declined with depth by quantifying suspended concentrations of particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphorus (POP), particulate chemical oxygen demand (PCOD), and total oxygen demand (Σ-O<sub>2</sub> = PCOD + 2PON) down to a depth of 1,000 m in the Sargasso Sea. The respiration quotient (<i>r</i><sub>-O2:C</sub> = PCOD:POC) and total respiration quotient (<i>r</i><sub>Σ-O2:C</sub> = Σ-O<sub>2</sub>:POC) declined with depth in the euphotic zone, but increased vertically in the disphotic zone. C:N and <i>r</i><sub>Σ-O2:N</sub> changed with depth, but surface values were similar to values at 1,000 m. C:P, N:P, and <i>r</i><sub>Σ-O2:P</sub> mostly decreased with depth. We hypothesize that <i>r</i><sub>Σ-O2:C</sub> is linked to multiple environmental factors that change with depth, such as phytoplankton community structure and the preferential production/removal of biomolecules. Using a global model, we show that the global distribution of dissolved oxygen is equally sensitive to <i>r</i><sub>-O2:C</sub> varying between surface biomes versus vertically during remineralization. Additionally, adjusting the model's <i>r</i><sub>-O2:C</sub> with depth to match our observations resulted in less dissolved oxygen throughout the upper ocean. Most of this loss occurred in the tropical Pacific thermocline, where oxygen models underestimate deoxygenation the most. This study aims to improve our understanding of biological oxygen demand as warming-induced deoxygenation continues.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"37 12\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007814\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007814","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

气候变暖可能会推动海洋脱氧,但模型仍然不能完全解释观测到的氧气减少。一个不受约束的参数是有机质完全再矿化所呼吸的每碳的需氧量(即总呼吸商,rΣ-O2:C)。在这里,我们通过量化马尾藻海1,000 m深度下悬浮颗粒有机碳(POC)、颗粒有机氮(PON)、颗粒有机磷(POP)、颗粒化学需氧量(PCOD)和总需氧量(Σ-O2 = PCOD + 2PON)的浓度,来测试rΣ-O2:C是否随深度下降。呼吸商(r-O2:C = PCOD:POC)和总呼吸商(rΣ-O2:C = Σ-O2:POC)在透光带随深度下降,在双光带随深度上升。C:N和rΣ-O2:N随深度的变化而变化,但地表值与1,000 m的值相似。C:P、N:P和rΣ-O2:P随深度增加而减少。我们假设rΣ-O2:C与多种随深度变化的环境因素有关,如浮游植物群落结构和生物分子的优先产生/去除。利用全球模型,我们发现在再矿化过程中,溶解氧的全球分布对地表生物群系之间的r-O2:C变化和垂直变化同样敏感。此外,调整模型的r-O2:C随深度的变化以匹配我们的观测结果,导致整个上层海洋的溶解氧减少。这种损失大部分发生在热带太平洋温跃层,那里的氧气模型最低估了脱氧。本研究旨在提高我们对气候变暖引起的脱氧过程中生物需氧量的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depth Variance of Organic Matter Respiration Stoichiometry in the Subtropical North Atlantic and the Implications for the Global Oxygen Cycle

Climate warming likely drives ocean deoxygenation, but models still cannot fully explain observed declines in oxygen. One unconstrained parameter is the oxygen demand per carbon respired for complete remineralization of organic matter (i.e., the total respiration quotient, rΣ-O2:C). Here, we tested if rΣ-O2:C declined with depth by quantifying suspended concentrations of particulate organic carbon (POC), particulate organic nitrogen (PON), particulate organic phosphorus (POP), particulate chemical oxygen demand (PCOD), and total oxygen demand (Σ-O2 = PCOD + 2PON) down to a depth of 1,000 m in the Sargasso Sea. The respiration quotient (r-O2:C = PCOD:POC) and total respiration quotient (rΣ-O2:C = Σ-O2:POC) declined with depth in the euphotic zone, but increased vertically in the disphotic zone. C:N and rΣ-O2:N changed with depth, but surface values were similar to values at 1,000 m. C:P, N:P, and rΣ-O2:P mostly decreased with depth. We hypothesize that rΣ-O2:C is linked to multiple environmental factors that change with depth, such as phytoplankton community structure and the preferential production/removal of biomolecules. Using a global model, we show that the global distribution of dissolved oxygen is equally sensitive to r-O2:C varying between surface biomes versus vertically during remineralization. Additionally, adjusting the model's r-O2:C with depth to match our observations resulted in less dissolved oxygen throughout the upper ocean. Most of this loss occurred in the tropical Pacific thermocline, where oxygen models underestimate deoxygenation the most. This study aims to improve our understanding of biological oxygen demand as warming-induced deoxygenation continues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信