MacMahon分区分析XIV: n个副本的分区

IF 0.9 2区 数学 Q2 MATHEMATICS
George E. Andrews , Peter Paule
{"title":"MacMahon分区分析XIV: n个副本的分区","authors":"George E. Andrews ,&nbsp;Peter Paule","doi":"10.1016/j.jcta.2023.105836","DOIUrl":null,"url":null,"abstract":"<div><p>We apply the methods of partition analysis to partitions with <em>n</em> copies of <em>n</em>. This allows us to obtain multivariable generating functions related to classical Rogers-Ramanujan type identities. Also, partitions with <em>n</em> copies of <em>n</em> are extended to partition diamonds yielding numerous new results including a natural connection to overpartitions and a variety of partition congruences.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105836"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MacMahon's partition analysis XIV: Partitions with n copies of n\",\"authors\":\"George E. Andrews ,&nbsp;Peter Paule\",\"doi\":\"10.1016/j.jcta.2023.105836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We apply the methods of partition analysis to partitions with <em>n</em> copies of <em>n</em>. This allows us to obtain multivariable generating functions related to classical Rogers-Ramanujan type identities. Also, partitions with <em>n</em> copies of <em>n</em> are extended to partition diamonds yielding numerous new results including a natural connection to overpartitions and a variety of partition congruences.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"203 \",\"pages\":\"Article 105836\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523001048\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将划分分析的方法应用于n个副本的划分。这允许我们获得与经典Rogers-Ramanujan类型恒等式相关的多变量生成函数。此外,具有n个副本的分区被扩展到分区菱形,产生了许多新的结果,包括与过度分区的自然联系和各种分区同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MacMahon's partition analysis XIV: Partitions with n copies of n

We apply the methods of partition analysis to partitions with n copies of n. This allows us to obtain multivariable generating functions related to classical Rogers-Ramanujan type identities. Also, partitions with n copies of n are extended to partition diamonds yielding numerous new results including a natural connection to overpartitions and a variety of partition congruences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信