Ximing Liao , Yin Wu , Nana Jiang , Jiaxing Sun , Wujian Xu , Shaoyong Gao , Jun Wang , Ting Li , Kun Wang , Qiang Li
{"title":"利用MobileNetV2自动检测来自电子听诊器和手机的异常呼吸声","authors":"Ximing Liao , Yin Wu , Nana Jiang , Jiaxing Sun , Wujian Xu , Shaoyong Gao , Jun Wang , Ting Li , Kun Wang , Qiang Li","doi":"10.1016/j.bbe.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Auscultation, a traditional clinical examination method using a stethoscope to quickly assess airway abnormalities, remains valuable due to its real-time, non-invasive, and easy-to-perform nature. Recent advancements in computerized respiratory sound analysis (CRSA) have provided a quantifiable approach for recording, editing, and comparing respiratory sounds, also enabling the training of artificial intelligence models to fully excavate the potential of auscultation. However, existing sound analysis models often require complex computations, leading to prolonged processing times and high calculation and memory requirements. Moreover, the limited diversity and scope of available databases limits reproducibility and robustness, mainly relying on small sample datasets primarily collected from Caucasians. In order to overcome these limitations, we developed a new Chinese adult respiratory sound database, LD-DF RSdb, using an electronic stethoscope and mobile phone. By enrolling 145 participants, 9,584 high quality recordings were collected, containing 6,435 normal sounds, 2,782 crackles, 208 wheezes, and 159 combined sounds. Subsequently, we utilized a lightweight neural network architecture, MobileNetV2, for automated categorization of the four types of respiratory sounds, achieving an appreciable overall performance with an AUC of 0.8923. This study demonstrates the feasibility and potential of using mobile phones, electronic stethoscopes, and MobileNetV2 in CRSA. The proposed method offers a convenient and promising approach to enhance overall respiratory disease management and may help address healthcare resource disparities.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0208521623000608/pdfft?md5=eb2d1ad12271a18266dc09d4d5b9b3c9&pid=1-s2.0-S0208521623000608-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated detection of abnormal respiratory sound from electronic stethoscope and mobile phone using MobileNetV2\",\"authors\":\"Ximing Liao , Yin Wu , Nana Jiang , Jiaxing Sun , Wujian Xu , Shaoyong Gao , Jun Wang , Ting Li , Kun Wang , Qiang Li\",\"doi\":\"10.1016/j.bbe.2023.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Auscultation, a traditional clinical examination method using a stethoscope to quickly assess airway abnormalities, remains valuable due to its real-time, non-invasive, and easy-to-perform nature. Recent advancements in computerized respiratory sound analysis (CRSA) have provided a quantifiable approach for recording, editing, and comparing respiratory sounds, also enabling the training of artificial intelligence models to fully excavate the potential of auscultation. However, existing sound analysis models often require complex computations, leading to prolonged processing times and high calculation and memory requirements. Moreover, the limited diversity and scope of available databases limits reproducibility and robustness, mainly relying on small sample datasets primarily collected from Caucasians. In order to overcome these limitations, we developed a new Chinese adult respiratory sound database, LD-DF RSdb, using an electronic stethoscope and mobile phone. By enrolling 145 participants, 9,584 high quality recordings were collected, containing 6,435 normal sounds, 2,782 crackles, 208 wheezes, and 159 combined sounds. Subsequently, we utilized a lightweight neural network architecture, MobileNetV2, for automated categorization of the four types of respiratory sounds, achieving an appreciable overall performance with an AUC of 0.8923. This study demonstrates the feasibility and potential of using mobile phones, electronic stethoscopes, and MobileNetV2 in CRSA. The proposed method offers a convenient and promising approach to enhance overall respiratory disease management and may help address healthcare resource disparities.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000608/pdfft?md5=eb2d1ad12271a18266dc09d4d5b9b3c9&pid=1-s2.0-S0208521623000608-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000608\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000608","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Automated detection of abnormal respiratory sound from electronic stethoscope and mobile phone using MobileNetV2
Auscultation, a traditional clinical examination method using a stethoscope to quickly assess airway abnormalities, remains valuable due to its real-time, non-invasive, and easy-to-perform nature. Recent advancements in computerized respiratory sound analysis (CRSA) have provided a quantifiable approach for recording, editing, and comparing respiratory sounds, also enabling the training of artificial intelligence models to fully excavate the potential of auscultation. However, existing sound analysis models often require complex computations, leading to prolonged processing times and high calculation and memory requirements. Moreover, the limited diversity and scope of available databases limits reproducibility and robustness, mainly relying on small sample datasets primarily collected from Caucasians. In order to overcome these limitations, we developed a new Chinese adult respiratory sound database, LD-DF RSdb, using an electronic stethoscope and mobile phone. By enrolling 145 participants, 9,584 high quality recordings were collected, containing 6,435 normal sounds, 2,782 crackles, 208 wheezes, and 159 combined sounds. Subsequently, we utilized a lightweight neural network architecture, MobileNetV2, for automated categorization of the four types of respiratory sounds, achieving an appreciable overall performance with an AUC of 0.8923. This study demonstrates the feasibility and potential of using mobile phones, electronic stethoscopes, and MobileNetV2 in CRSA. The proposed method offers a convenient and promising approach to enhance overall respiratory disease management and may help address healthcare resource disparities.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.