基于多聚表位肽的登革热病毒血清2型疫苗的免疫信息学设计

Mohamed Sheik Tharik Abdul Azeeze , Rajaguru Arivuselvam
{"title":"基于多聚表位肽的登革热病毒血清2型疫苗的免疫信息学设计","authors":"Mohamed Sheik Tharik Abdul Azeeze ,&nbsp;Rajaguru Arivuselvam","doi":"10.1016/j.vacune.2023.10.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Dengue viral infection affects approximately 130 countries worldwide. According to WHO reports, 40% of the global population lives in rural areas with a high risk of contracting dengue. Researchers have identified four distant strains of the dengue virus, and a single vaccine has not permanently controlled the emergence of all four distant strains. Therefore, a vaccine is required for each of the four strains to address the current situation.</p></div><div><h3>Objectives</h3><p>The objective of this study was to design a multi-epitope-based vaccine for the dengue virus-2 strain that elicits a robust immune response while being safe and non-allergenic.</p></div><div><h3>Results</h3><p><span>Firstly, we analyzed the envelope protein<span><span> for its physicochemical and antigenic properties. Next, we predicted MHC I, MHC II, and B-cell epitopes with high accuracy and evaluated their properties. Then, we constructed a vaccine using a suitable adjuvant and linkers, and predicted the secondary and tertiary structure of the vaccine, and the tertiary structure was validated. After conducting </span>molecular docking with toll-like receptors, we utilized the best-docked result for molecular stimulation. Finally, we analyzed the </span></span>immune stimulation against the vaccine, and the results showed positive immune responses from macrophages, DC cells, T-cells, and B-cells. Additionally, we found that the vaccine was excreted from the human body.</p></div><div><h3>Conclusions</h3><p>Our study demonstrates the potential of using immunoinformatic tools and immunological knowledge to design a multi-epitope-based vaccine for the dengue virus-2 strain. This approach could be applied to designing vaccines for other diseases, and further studies are required to validate its effectiveness in vivo<em>.</em></p></div>","PeriodicalId":101272,"journal":{"name":"Vacunas (English Edition)","volume":"24 4","pages":"Pages 380-393"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immuno-informatics design of a multimeric epitope peptide-based vaccine against dengue virus serotype-2\",\"authors\":\"Mohamed Sheik Tharik Abdul Azeeze ,&nbsp;Rajaguru Arivuselvam\",\"doi\":\"10.1016/j.vacune.2023.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Dengue viral infection affects approximately 130 countries worldwide. According to WHO reports, 40% of the global population lives in rural areas with a high risk of contracting dengue. Researchers have identified four distant strains of the dengue virus, and a single vaccine has not permanently controlled the emergence of all four distant strains. Therefore, a vaccine is required for each of the four strains to address the current situation.</p></div><div><h3>Objectives</h3><p>The objective of this study was to design a multi-epitope-based vaccine for the dengue virus-2 strain that elicits a robust immune response while being safe and non-allergenic.</p></div><div><h3>Results</h3><p><span>Firstly, we analyzed the envelope protein<span><span> for its physicochemical and antigenic properties. Next, we predicted MHC I, MHC II, and B-cell epitopes with high accuracy and evaluated their properties. Then, we constructed a vaccine using a suitable adjuvant and linkers, and predicted the secondary and tertiary structure of the vaccine, and the tertiary structure was validated. After conducting </span>molecular docking with toll-like receptors, we utilized the best-docked result for molecular stimulation. Finally, we analyzed the </span></span>immune stimulation against the vaccine, and the results showed positive immune responses from macrophages, DC cells, T-cells, and B-cells. Additionally, we found that the vaccine was excreted from the human body.</p></div><div><h3>Conclusions</h3><p>Our study demonstrates the potential of using immunoinformatic tools and immunological knowledge to design a multi-epitope-based vaccine for the dengue virus-2 strain. This approach could be applied to designing vaccines for other diseases, and further studies are required to validate its effectiveness in vivo<em>.</em></p></div>\",\"PeriodicalId\":101272,\"journal\":{\"name\":\"Vacunas (English Edition)\",\"volume\":\"24 4\",\"pages\":\"Pages 380-393\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacunas (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2445146023000687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacunas (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2445146023000687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

登革热病毒感染影响全球约130个国家。根据世卫组织的报告,全球40%的人口生活在农村地区,感染登革热的风险很高。科学家已经确定了登革热病毒的四种远源毒株,一种疫苗并不能永久地控制所有四种远源毒株的出现。因此,需要为这四种毒株中的每一种都接种一种疫苗,以应对目前的情况。本研究的目的是为登革热病毒2株设计一种基于多表位的疫苗,该疫苗可引起强大的免疫反应,同时具有安全性和非过敏性。结果首先分析了包膜蛋白的理化性质和抗原性。接下来,我们高精度地预测MHC I、MHC II和b细胞表位,并评估它们的性质。然后,选用合适的佐剂和连接剂构建疫苗,预测疫苗的二级和三级结构,并对三级结构进行验证。在与toll样受体进行分子对接后,我们利用最佳对接结果进行分子刺激。最后,我们分析了对疫苗的免疫刺激,结果显示巨噬细胞、DC细胞、t细胞和b细胞的免疫反应呈阳性。此外,我们发现疫苗可以从人体排出。结论利用免疫信息学工具和免疫学知识设计基于多表位的登革病毒2株疫苗是可行的。这种方法可以应用于设计其他疾病的疫苗,需要进一步的研究来验证其在体内的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immuno-informatics design of a multimeric epitope peptide-based vaccine against dengue virus serotype-2

Introduction

Dengue viral infection affects approximately 130 countries worldwide. According to WHO reports, 40% of the global population lives in rural areas with a high risk of contracting dengue. Researchers have identified four distant strains of the dengue virus, and a single vaccine has not permanently controlled the emergence of all four distant strains. Therefore, a vaccine is required for each of the four strains to address the current situation.

Objectives

The objective of this study was to design a multi-epitope-based vaccine for the dengue virus-2 strain that elicits a robust immune response while being safe and non-allergenic.

Results

Firstly, we analyzed the envelope protein for its physicochemical and antigenic properties. Next, we predicted MHC I, MHC II, and B-cell epitopes with high accuracy and evaluated their properties. Then, we constructed a vaccine using a suitable adjuvant and linkers, and predicted the secondary and tertiary structure of the vaccine, and the tertiary structure was validated. After conducting molecular docking with toll-like receptors, we utilized the best-docked result for molecular stimulation. Finally, we analyzed the immune stimulation against the vaccine, and the results showed positive immune responses from macrophages, DC cells, T-cells, and B-cells. Additionally, we found that the vaccine was excreted from the human body.

Conclusions

Our study demonstrates the potential of using immunoinformatic tools and immunological knowledge to design a multi-epitope-based vaccine for the dengue virus-2 strain. This approach could be applied to designing vaccines for other diseases, and further studies are required to validate its effectiveness in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信