间充质干细胞球体冷冻保存介质的比较。

IF 1.6 4区 生物学
Biopreservation and Biobanking Pub Date : 2024-10-01 Epub Date: 2023-11-22 DOI:10.1089/bio.2023.0057
Jin Ju Park, Ok-Hee Lee, Jie-Eun Park, Jaejin Cho
{"title":"间充质干细胞球体冷冻保存介质的比较。","authors":"Jin Ju Park, Ok-Hee Lee, Jie-Eun Park, Jaejin Cho","doi":"10.1089/bio.2023.0057","DOIUrl":null,"url":null,"abstract":"<p><p>Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative \"stemness\" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.</p>","PeriodicalId":55358,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"486-496"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Cryopreservation Media for Mesenchymal Stem Cell Spheroids.\",\"authors\":\"Jin Ju Park, Ok-Hee Lee, Jie-Eun Park, Jaejin Cho\",\"doi\":\"10.1089/bio.2023.0057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative \\\"stemness\\\" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.</p>\",\"PeriodicalId\":55358,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"486-496\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2023.0057\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2023.0057","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在三维培养中生成的多能间充质基质/干细胞(MSC)球体作为一种新的再生医学治疗工具受到了广泛关注。然而,缺乏可靠的储存MSC球体的方法是它们在临床成功应用的一个重大障碍。一种理想的MSC球体存储介质应该在球体存储过程中作为递送载体和冷冻保护剂以供以后使用。在这项研究中,我们比较了将MSC球体在三种良好生产规范级冷冻保存介质中进行冷冻/解冻循环后的结果,这三种冷冻保存介质分别是CryoStor10 (CS10)、干细胞库(SCB)和恢复细胞培养冷冻介质(RFM)或常规冷冻介质(CM, Dulbecco改良Eagle培养基,含有20%胎牛血清和10%二甲亚砜)作为对照,为期2个月。测试的终点是活力、形态、干细胞标记物和其他相关基因的表达。LIVE/DEAD™检测和膜联蛋白V/碘化丙啶染色结果表明,CS10或SCB中一个冻融循环后的细胞活力相对高于CM或RFM中冻融循环后的细胞活力。此外,在CS10中,冷冻/解冻前后MSC标记物的相对“干性”和表达相似。扫描电镜还显示,在CS10中低温保存后,MSC球体的表面形态得到了很好的保存。因此,尽管CS10只进行了短期测试,但我们认为CS10是一种很有前途的冷冻保存培养基,它已被美国食品和药物协会批准用于临床,可以促进MSC球形细胞的发展,用于未来的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Cryopreservation Media for Mesenchymal Stem Cell Spheroids.

Multipotent mesenchymal stromal/stem cell (MSC) spheroids generated in three-dimensional culture are of considerable interest as a novel therapeutic tool for regenerative medicine. However, the lack of reliable methods for storing MSC spheroids represents a significant roadblock to their successful use in the clinic. An ideal storage medium for MSC spheroids should function as both a vehicle for delivery and a cryoprotectant during storage of spheroids for use at a later time. In this study, we compared the outcomes after subjecting MSC spheroids to a freeze/thaw cycle in three Good Manufacturing Practices-grade cryopreservation media, CryoStor10 (CS10), Stem-Cellbanker (SCB), and Recovery Cell Culture Freezing Media (RFM) or conventional freezing medium (CM) (CM, Dulbecco's modified Eagle's medium containing 20% fetal bovine serum and 10% dimethyl sulfoxide) as a control for 2 months. The endpoints tested were viability, morphology, and expression of stem cell markers and other relevant genes. The results of LIVE/DEAD™ assays and annexin V/propidium iodide staining suggested that viability was relatively higher after one freeze/thaw cycle in CS10 or SCB than after freeze/thaw in CM or RFM. Furthermore, the relative "stemness" and expression of MSC markers were similar with or without freeze/thaw in CS10. Scanning electron microscopy also indicated that the surface morphology of MSC spheroids was well preserved after cryopreservation in CS10. Thus, even though it was tested for a short-term period, we suggest that CS10, which has been approved for clinical use by the U.S. Food and Drug Association, is a promising cryopreservation medium that would facilitate the development of MSC spheroids for future clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biopreservation and Biobanking
Biopreservation and Biobanking Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
自引率
12.50%
发文量
114
期刊介绍: Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research. In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community. Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信