Senktide阻断异常RTN3相互作用组以延缓社会孤立阿尔茨海默病小鼠的记忆衰退和tau病理。

IF 13.6 1区 生物学 Q1 CELL BIOLOGY
He-Zhou Huang, Wen-Qing Ai, Na Wei, Ling-Shuang Zhu, Zhi-Qiang Liu, Chao-Wen Zhou, Man-Fei Deng, Wen-Tao Zhang, Jia-Chen Zhang, Chun-Qing Yang, Ya-Zhuo Hu, Zhi-Tao Han, Hong-Hong Zhang, Jian-Jun Jia, Jing Wang, Fang-Fang Liu, Ke Li, Qi Xu, Mei Yuan, Hengye Man, Ziyuan Guo, Youming Lu, Kai Shu, Ling-Qiang Zhu, Dan Liu
{"title":"Senktide阻断异常RTN3相互作用组以延缓社会孤立阿尔茨海默病小鼠的记忆衰退和tau病理。","authors":"He-Zhou Huang, Wen-Qing Ai, Na Wei, Ling-Shuang Zhu, Zhi-Qiang Liu, Chao-Wen Zhou, Man-Fei Deng, Wen-Tao Zhang, Jia-Chen Zhang, Chun-Qing Yang, Ya-Zhuo Hu, Zhi-Tao Han, Hong-Hong Zhang, Jian-Jun Jia, Jing Wang, Fang-Fang Liu, Ke Li, Qi Xu, Mei Yuan, Hengye Man, Ziyuan Guo, Youming Lu, Kai Shu, Ling-Qiang Zhu, Dan Liu","doi":"10.1093/procel/pwad056","DOIUrl":null,"url":null,"abstract":"<p><p>Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.</p>","PeriodicalId":20790,"journal":{"name":"Protein & Cell","volume":" ","pages":"261-284"},"PeriodicalIF":13.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984625/pdf/","citationCount":"0","resultStr":"{\"title\":\"Senktide blocks aberrant RTN3 interactome to retard memory decline and tau pathology in social isolated Alzheimer's disease mice.\",\"authors\":\"He-Zhou Huang, Wen-Qing Ai, Na Wei, Ling-Shuang Zhu, Zhi-Qiang Liu, Chao-Wen Zhou, Man-Fei Deng, Wen-Tao Zhang, Jia-Chen Zhang, Chun-Qing Yang, Ya-Zhuo Hu, Zhi-Tao Han, Hong-Hong Zhang, Jian-Jun Jia, Jing Wang, Fang-Fang Liu, Ke Li, Qi Xu, Mei Yuan, Hengye Man, Ziyuan Guo, Youming Lu, Kai Shu, Ling-Qiang Zhu, Dan Liu\",\"doi\":\"10.1093/procel/pwad056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.</p>\",\"PeriodicalId\":20790,\"journal\":{\"name\":\"Protein & Cell\",\"volume\":\" \",\"pages\":\"261-284\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984625/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein & Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/procel/pwad056\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein & Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/procel/pwad056","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

散发性或晚发性阿尔茨海默病(LOAD)占无家族史的AD病例的95%以上。尽管全基因组关联研究(GWAS)已经确定了与LOAD相关的风险基因和位点,但许多研究表明,许多不利的环境因素,如社会孤立,与痴呆风险增加有关。然而,社会隔离在阿尔茨海默病进展中的潜在机制仍然难以捉摸。在目前的研究中,我们发现7天的社会隔离可以引发AD小鼠模式分离障碍和苔藓纤维- ca3电路的突触前异常。我们还发现,社会隔离破坏了组蛋白乙酰化,导致2个富含dg的mirna下调,这些mirna同时靶向网状蛋白3 (RTN3), RTN3是一种内质网蛋白,聚集在突触前区域,通过募集多种线粒体和囊泡相关蛋白来干扰功能性苔藓纤维扣(mfb)的形成。有趣的是,RTN3的聚集也会招募PP2A B亚基来抑制PP2A活性并诱导tau过度磷酸化,进而进一步升高RTN3并形成恶性循环。最后,利用人工智能(AI)辅助的分子对接方法,我们确定了senktide,一种神经激肽3受体(NK3R)的选择性激动剂,可以减少RTN3与其伴侣的结合。此外,senktide在体内的应用可以有效地恢复社会孤立AD小鼠的DG电路紊乱。综上所述,我们的研究结果不仅证明了由社会隔离和tau病理引起的苔藓纤维突触紊乱的表观遗传调控机制,而且揭示了一种新的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Senktide blocks aberrant RTN3 interactome to retard memory decline and tau pathology in social isolated Alzheimer's disease mice.

Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein & Cell
Protein & Cell CELL BIOLOGY-
CiteScore
24.00
自引率
0.90%
发文量
1029
审稿时长
6-12 weeks
期刊介绍: Protein & Cell is a monthly, peer-reviewed, open-access journal focusing on multidisciplinary aspects of biology and biomedicine, with a primary emphasis on protein and cell research. It publishes original research articles, reviews, and commentaries across various fields including biochemistry, biophysics, cell biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology, and translational medicine. The journal also features content on research policies, funding trends in China, and serves as a platform for academic exchange among life science researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信