Haoru Wang, Chunlin Yu, Hao Ding, Li Zhang, Xin Chen, Ling He
{"title":"基于计算机断层扫描的放射组学特征预测儿童神经母细胞瘤1p36和11q23染色体段性畸变","authors":"Haoru Wang, Chunlin Yu, Hao Ding, Li Zhang, Xin Chen, Ling He","doi":"10.1097/RCT.0000000000001564","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and assess the precision of a radiomics signature based on computed tomography imaging for predicting segmental chromosomal aberrations (SCAs) status at 1p36 and 11q23 in neuroblastoma.</p><p><strong>Methods: </strong>Eighty-seven pediatric patients diagnosed with neuroblastoma and with confirmed genetic testing for SCAs status at 1p36 and 11q23 were enrolled and randomly stratified into a training set and a test set. Radiomics features were extracted from 3-phase computed tomography images and analyzed using various statistical methods. An optimal set of radiomics features was selected using a least absolute shrinkage and selection operator regression model to calculate the radiomics score for each patient. The radiomics signature was validated using receiver operating characteristic curves to obtain the area under the curve and 95% confidence interval (CI).</p><p><strong>Results: </strong>Eight radiomics features were carefully selected and used to compute the radiomics score, which demonstrated a statistically significant distinction between the SCAs and non-SCAs groups in both sets. The radiomics signature achieved an area under the curve of 0.869 (95% CI, 0.788-0.943) and 0.883 (95% CI, 0.753-0.978) in the training and test sets, respectively. The accuracy of the radiomics signature was 0.817 and 0.778 in the training and test sets, respectively. The Hosmer-Lemeshow test confirmed that the radiomics signature was well calibrated.</p><p><strong>Conclusions: </strong>Computed tomography-based radiomics signature has the potential to predict SCAs at 1p36 and 11q23 in neuroblastoma.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":"472-479"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computed Tomography-Based Radiomics Signature for Predicting Segmental Chromosomal Aberrations at 1p36 and 11q23 in Pediatric Neuroblastoma.\",\"authors\":\"Haoru Wang, Chunlin Yu, Hao Ding, Li Zhang, Xin Chen, Ling He\",\"doi\":\"10.1097/RCT.0000000000001564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to develop and assess the precision of a radiomics signature based on computed tomography imaging for predicting segmental chromosomal aberrations (SCAs) status at 1p36 and 11q23 in neuroblastoma.</p><p><strong>Methods: </strong>Eighty-seven pediatric patients diagnosed with neuroblastoma and with confirmed genetic testing for SCAs status at 1p36 and 11q23 were enrolled and randomly stratified into a training set and a test set. Radiomics features were extracted from 3-phase computed tomography images and analyzed using various statistical methods. An optimal set of radiomics features was selected using a least absolute shrinkage and selection operator regression model to calculate the radiomics score for each patient. The radiomics signature was validated using receiver operating characteristic curves to obtain the area under the curve and 95% confidence interval (CI).</p><p><strong>Results: </strong>Eight radiomics features were carefully selected and used to compute the radiomics score, which demonstrated a statistically significant distinction between the SCAs and non-SCAs groups in both sets. The radiomics signature achieved an area under the curve of 0.869 (95% CI, 0.788-0.943) and 0.883 (95% CI, 0.753-0.978) in the training and test sets, respectively. The accuracy of the radiomics signature was 0.817 and 0.778 in the training and test sets, respectively. The Hosmer-Lemeshow test confirmed that the radiomics signature was well calibrated.</p><p><strong>Conclusions: </strong>Computed tomography-based radiomics signature has the potential to predict SCAs at 1p36 and 11q23 in neuroblastoma.</p>\",\"PeriodicalId\":15402,\"journal\":{\"name\":\"Journal of Computer Assisted Tomography\",\"volume\":\" \",\"pages\":\"472-479\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Assisted Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RCT.0000000000001564\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001564","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Computed Tomography-Based Radiomics Signature for Predicting Segmental Chromosomal Aberrations at 1p36 and 11q23 in Pediatric Neuroblastoma.
Objective: This study aimed to develop and assess the precision of a radiomics signature based on computed tomography imaging for predicting segmental chromosomal aberrations (SCAs) status at 1p36 and 11q23 in neuroblastoma.
Methods: Eighty-seven pediatric patients diagnosed with neuroblastoma and with confirmed genetic testing for SCAs status at 1p36 and 11q23 were enrolled and randomly stratified into a training set and a test set. Radiomics features were extracted from 3-phase computed tomography images and analyzed using various statistical methods. An optimal set of radiomics features was selected using a least absolute shrinkage and selection operator regression model to calculate the radiomics score for each patient. The radiomics signature was validated using receiver operating characteristic curves to obtain the area under the curve and 95% confidence interval (CI).
Results: Eight radiomics features were carefully selected and used to compute the radiomics score, which demonstrated a statistically significant distinction between the SCAs and non-SCAs groups in both sets. The radiomics signature achieved an area under the curve of 0.869 (95% CI, 0.788-0.943) and 0.883 (95% CI, 0.753-0.978) in the training and test sets, respectively. The accuracy of the radiomics signature was 0.817 and 0.778 in the training and test sets, respectively. The Hosmer-Lemeshow test confirmed that the radiomics signature was well calibrated.
Conclusions: Computed tomography-based radiomics signature has the potential to predict SCAs at 1p36 and 11q23 in neuroblastoma.
期刊介绍:
The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).