Jing Li, Shuai Li, Jing Li, Xinyang Tan, Zhichang Zhao, Lei Jiang, Ary A Hoffmann, Jichao Fang, Rui Ji
{"title":"褐飞虱(Nilaparvata lugens)的卵相关分泌物激活水稻免疫反应。","authors":"Jing Li, Shuai Li, Jing Li, Xinyang Tan, Zhichang Zhao, Lei Jiang, Ary A Hoffmann, Jichao Fang, Rui Ji","doi":"10.1111/1744-7917.13303","DOIUrl":null,"url":null,"abstract":"<p><p>The brown planthopper (BPH, Nilaparvata lugens) is a notorious sap-sucking insect pest that damages rice (Oryza sativa) plants throughout Asia. During BPH feeding, saliva enters rice plant tissues, whereas during oviposition egg-associated secretions (EAS) are deposited in damaged plant tissue. Dynamic changes in rice to planthopper salivary effectors have been widely reported. However, the effects of EAS from planthopper on rice immunity remains largely unexplored. In this study, we found that both infestation of rice by gravid BPH female adults and treatment with the EAS elicited a strong and rapid accumulation of jasmonic acid (JA), JA-isoleucine, and hydrogen peroxide in rice. EAS enhanced plant defenses not only in rice but also in tobacco, and these impaired the performance of BPH on rice, as well as the performance of aphids and whiteflies on tobacco. High-throughput proteome sequencing of EAS led to 110 proteins being identified and 53 proteins with 2 or more unique peptides being detected. Some proteins from BPH EAS were also found in the salivary proteome from herbivores, suggesting potential evolutionary conservation of effector functions across feeding and oviposition; however, others were only identified in EAS, and these are likely specifically related to oviposition. These findings point to novel proteins affecting interactions between planthoppers and rice during oviposition, providing an additional source of information for effector studies.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Egg-associated secretions from the brown planthopper (Nilaparvata lugens) activate rice immune responses.\",\"authors\":\"Jing Li, Shuai Li, Jing Li, Xinyang Tan, Zhichang Zhao, Lei Jiang, Ary A Hoffmann, Jichao Fang, Rui Ji\",\"doi\":\"10.1111/1744-7917.13303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brown planthopper (BPH, Nilaparvata lugens) is a notorious sap-sucking insect pest that damages rice (Oryza sativa) plants throughout Asia. During BPH feeding, saliva enters rice plant tissues, whereas during oviposition egg-associated secretions (EAS) are deposited in damaged plant tissue. Dynamic changes in rice to planthopper salivary effectors have been widely reported. However, the effects of EAS from planthopper on rice immunity remains largely unexplored. In this study, we found that both infestation of rice by gravid BPH female adults and treatment with the EAS elicited a strong and rapid accumulation of jasmonic acid (JA), JA-isoleucine, and hydrogen peroxide in rice. EAS enhanced plant defenses not only in rice but also in tobacco, and these impaired the performance of BPH on rice, as well as the performance of aphids and whiteflies on tobacco. High-throughput proteome sequencing of EAS led to 110 proteins being identified and 53 proteins with 2 or more unique peptides being detected. Some proteins from BPH EAS were also found in the salivary proteome from herbivores, suggesting potential evolutionary conservation of effector functions across feeding and oviposition; however, others were only identified in EAS, and these are likely specifically related to oviposition. These findings point to novel proteins affecting interactions between planthoppers and rice during oviposition, providing an additional source of information for effector studies.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13303\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13303","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Egg-associated secretions from the brown planthopper (Nilaparvata lugens) activate rice immune responses.
The brown planthopper (BPH, Nilaparvata lugens) is a notorious sap-sucking insect pest that damages rice (Oryza sativa) plants throughout Asia. During BPH feeding, saliva enters rice plant tissues, whereas during oviposition egg-associated secretions (EAS) are deposited in damaged plant tissue. Dynamic changes in rice to planthopper salivary effectors have been widely reported. However, the effects of EAS from planthopper on rice immunity remains largely unexplored. In this study, we found that both infestation of rice by gravid BPH female adults and treatment with the EAS elicited a strong and rapid accumulation of jasmonic acid (JA), JA-isoleucine, and hydrogen peroxide in rice. EAS enhanced plant defenses not only in rice but also in tobacco, and these impaired the performance of BPH on rice, as well as the performance of aphids and whiteflies on tobacco. High-throughput proteome sequencing of EAS led to 110 proteins being identified and 53 proteins with 2 or more unique peptides being detected. Some proteins from BPH EAS were also found in the salivary proteome from herbivores, suggesting potential evolutionary conservation of effector functions across feeding and oviposition; however, others were only identified in EAS, and these are likely specifically related to oviposition. These findings point to novel proteins affecting interactions between planthoppers and rice during oviposition, providing an additional source of information for effector studies.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.