Felipe Castillo, Constanza Morales, Biserka Spralja, Joaquín Díaz-Schmidt, Mirentxu Iruretagoyena, Daniel Ernst
{"title":"流式细胞术应用TRBC-1在淋巴瘤疑似样本中整合t细胞克隆筛选。","authors":"Felipe Castillo, Constanza Morales, Biserka Spralja, Joaquín Díaz-Schmidt, Mirentxu Iruretagoyena, Daniel Ernst","doi":"10.1002/cyto.b.22147","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The diagnosis of T-cell non-Hodgkin lymphomas (NHL) is challenging. The development of a monoclonal antibody specific for T-cell receptor β constant region 1 (TRBC1) provides an alternative to discriminate clonal T cells. The aim of this study was to evaluate the diagnostic potential of an anti-TRBC1 mAb for the identification of T-NHL.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We performed a cross-sectional diagnostic analytic study of samples tested for lymphoma. All samples sent for lymphoma screening were first evaluated using the standard Euroflow LST, to which a second additional custom-designed T-cell clonality assessment tube was added CD45/TRBC1/CD2/CD7/CD4/TCRγδ/CD3. Flow cytometry reports were compared with morphological and molecular tests.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Fifty-nine patient samples were evaluated. Within the T-cell population, cut-off percentages in the CD4+ cells were from 29.4 to 54.6% and from 23.9 to 52.1% in CD8+ cells. Cut-off ratios in CD4+ T cells were from 0.33 to 1.1, and in CD8+ cells between 0.22 and 1.0. Using predefined normal cut-off values, 18 of 59 (30.5%) samples showed a restricted expression of TRBC1. A final diagnosis of a T-NHL was confirmed clinically and/or by histopathological studies in 15 of the 18 cases (83.3%). There were no cases of T-NHL by morphology/IHC with normal TRBC1 expression. Non-neoplastic patient samples behaved between predefined TRBC1 cut-off values.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Expression of TRBC1 provides a robust method for T-cell clonality assessment, with very high sensitivity and good correlation with complementary methods. TRBC1 can be integrated into routine lymphoma screening strategies via flow cytometry.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of T-cell clonality screening using TRBC-1 in lymphoma suspect samples by flow cytometry\",\"authors\":\"Felipe Castillo, Constanza Morales, Biserka Spralja, Joaquín Díaz-Schmidt, Mirentxu Iruretagoyena, Daniel Ernst\",\"doi\":\"10.1002/cyto.b.22147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The diagnosis of T-cell non-Hodgkin lymphomas (NHL) is challenging. The development of a monoclonal antibody specific for T-cell receptor β constant region 1 (TRBC1) provides an alternative to discriminate clonal T cells. The aim of this study was to evaluate the diagnostic potential of an anti-TRBC1 mAb for the identification of T-NHL.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We performed a cross-sectional diagnostic analytic study of samples tested for lymphoma. All samples sent for lymphoma screening were first evaluated using the standard Euroflow LST, to which a second additional custom-designed T-cell clonality assessment tube was added CD45/TRBC1/CD2/CD7/CD4/TCRγδ/CD3. Flow cytometry reports were compared with morphological and molecular tests.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Fifty-nine patient samples were evaluated. Within the T-cell population, cut-off percentages in the CD4+ cells were from 29.4 to 54.6% and from 23.9 to 52.1% in CD8+ cells. Cut-off ratios in CD4+ T cells were from 0.33 to 1.1, and in CD8+ cells between 0.22 and 1.0. Using predefined normal cut-off values, 18 of 59 (30.5%) samples showed a restricted expression of TRBC1. A final diagnosis of a T-NHL was confirmed clinically and/or by histopathological studies in 15 of the 18 cases (83.3%). There were no cases of T-NHL by morphology/IHC with normal TRBC1 expression. Non-neoplastic patient samples behaved between predefined TRBC1 cut-off values.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Expression of TRBC1 provides a robust method for T-cell clonality assessment, with very high sensitivity and good correlation with complementary methods. TRBC1 can be integrated into routine lymphoma screening strategies via flow cytometry.</p>\\n </section>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Integration of T-cell clonality screening using TRBC-1 in lymphoma suspect samples by flow cytometry
Background
The diagnosis of T-cell non-Hodgkin lymphomas (NHL) is challenging. The development of a monoclonal antibody specific for T-cell receptor β constant region 1 (TRBC1) provides an alternative to discriminate clonal T cells. The aim of this study was to evaluate the diagnostic potential of an anti-TRBC1 mAb for the identification of T-NHL.
Methods
We performed a cross-sectional diagnostic analytic study of samples tested for lymphoma. All samples sent for lymphoma screening were first evaluated using the standard Euroflow LST, to which a second additional custom-designed T-cell clonality assessment tube was added CD45/TRBC1/CD2/CD7/CD4/TCRγδ/CD3. Flow cytometry reports were compared with morphological and molecular tests.
Results
Fifty-nine patient samples were evaluated. Within the T-cell population, cut-off percentages in the CD4+ cells were from 29.4 to 54.6% and from 23.9 to 52.1% in CD8+ cells. Cut-off ratios in CD4+ T cells were from 0.33 to 1.1, and in CD8+ cells between 0.22 and 1.0. Using predefined normal cut-off values, 18 of 59 (30.5%) samples showed a restricted expression of TRBC1. A final diagnosis of a T-NHL was confirmed clinically and/or by histopathological studies in 15 of the 18 cases (83.3%). There were no cases of T-NHL by morphology/IHC with normal TRBC1 expression. Non-neoplastic patient samples behaved between predefined TRBC1 cut-off values.
Conclusions
Expression of TRBC1 provides a robust method for T-cell clonality assessment, with very high sensitivity and good correlation with complementary methods. TRBC1 can be integrated into routine lymphoma screening strategies via flow cytometry.