{"title":"醛缩酶A通过调节辐照后糖酵解和DNA损伤促进宫颈癌细胞的辐射抵抗。","authors":"Junying Zhou, Ningjing Lei, Bo Qin, Mengyu Chen, Shuai Gong, Hao Sun, Luojie Qiu, Fengling Wu, Ruixia Guo, Qian Ma, Yong Li, Lei Chang","doi":"10.1080/15384047.2023.2287128","DOIUrl":null,"url":null,"abstract":"<p><p>Radioresistance is the major obstacle that affects the efficacy of radiotherapy which is an important treatment for cervical cancer. By analyzing the databases, we found that aldolase A (ALDOA), which is a key enzyme in metabolic reprogramming, has a higher expression in cervical cancer patients and is associated with poor prognosis. We detected the expression of ALDOA in the constructed cervical cancer radioresistance (RR) cells by repetitive irradiation and found that it was upregulated compared to the control cells. Functional assays were conducted and the results showed that the knockdown of ALDOA in cervical cancer RR cells inhibited the proliferation, migration, and clonogenic abilities by regulating the cell glycolysis. In addition, downregulation of ALDOA enhanced radiation-induced apoptosis and DNA damage by causing G2/M phase arrest and further promoted radiosensitivity of cervical cancer cells. The functions of ALDOA in regulating tumor radiosensitivity were also verified by the mouse tumor transplantation model <i>in vivo</i>. Therefore, our study provides new insights into the functions of ALDOA in regulating the efficacy of radiotherapy and indicates that ALDOA might be a promising target for enhancing radiosensitivity in treating cervical cancer patients.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"24 1","pages":"2287128"},"PeriodicalIF":4.4000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761068/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aldolase A promotes cervical cancer cell radioresistance by regulating the glycolysis and DNA damage after irradiation.\",\"authors\":\"Junying Zhou, Ningjing Lei, Bo Qin, Mengyu Chen, Shuai Gong, Hao Sun, Luojie Qiu, Fengling Wu, Ruixia Guo, Qian Ma, Yong Li, Lei Chang\",\"doi\":\"10.1080/15384047.2023.2287128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radioresistance is the major obstacle that affects the efficacy of radiotherapy which is an important treatment for cervical cancer. By analyzing the databases, we found that aldolase A (ALDOA), which is a key enzyme in metabolic reprogramming, has a higher expression in cervical cancer patients and is associated with poor prognosis. We detected the expression of ALDOA in the constructed cervical cancer radioresistance (RR) cells by repetitive irradiation and found that it was upregulated compared to the control cells. Functional assays were conducted and the results showed that the knockdown of ALDOA in cervical cancer RR cells inhibited the proliferation, migration, and clonogenic abilities by regulating the cell glycolysis. In addition, downregulation of ALDOA enhanced radiation-induced apoptosis and DNA damage by causing G2/M phase arrest and further promoted radiosensitivity of cervical cancer cells. The functions of ALDOA in regulating tumor radiosensitivity were also verified by the mouse tumor transplantation model <i>in vivo</i>. Therefore, our study provides new insights into the functions of ALDOA in regulating the efficacy of radiotherapy and indicates that ALDOA might be a promising target for enhancing radiosensitivity in treating cervical cancer patients.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"24 1\",\"pages\":\"2287128\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761068/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2023.2287128\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2023.2287128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Aldolase A promotes cervical cancer cell radioresistance by regulating the glycolysis and DNA damage after irradiation.
Radioresistance is the major obstacle that affects the efficacy of radiotherapy which is an important treatment for cervical cancer. By analyzing the databases, we found that aldolase A (ALDOA), which is a key enzyme in metabolic reprogramming, has a higher expression in cervical cancer patients and is associated with poor prognosis. We detected the expression of ALDOA in the constructed cervical cancer radioresistance (RR) cells by repetitive irradiation and found that it was upregulated compared to the control cells. Functional assays were conducted and the results showed that the knockdown of ALDOA in cervical cancer RR cells inhibited the proliferation, migration, and clonogenic abilities by regulating the cell glycolysis. In addition, downregulation of ALDOA enhanced radiation-induced apoptosis and DNA damage by causing G2/M phase arrest and further promoted radiosensitivity of cervical cancer cells. The functions of ALDOA in regulating tumor radiosensitivity were also verified by the mouse tumor transplantation model in vivo. Therefore, our study provides new insights into the functions of ALDOA in regulating the efficacy of radiotherapy and indicates that ALDOA might be a promising target for enhancing radiosensitivity in treating cervical cancer patients.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.