{"title":"射频介电光谱研究:pH、氢键供体和受体对谱蛋白骨架附着于红细胞脂膜的影响。","authors":"Ivan T. Ivanov DSc, Boyana K. Paarvanova PhD","doi":"10.1002/bem.22491","DOIUrl":null,"url":null,"abstract":"<p>Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, β<sub>sp</sub> (1.4 MHz) and γ1<sub>sp</sub> (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the β<sub>sp</sub> relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1<sub>sp</sub> relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the β<sub>sp</sub> and γ1<sub>sp</sub> relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the β<sub>sp</sub> relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1<sub>sp</sub> relaxation.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"45 2","pages":"58-69"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiofrequency dielectric spectroscopy study: Effects of pH, hydrogen bond donors and acceptors on the attachment of spectrin skeleton to the lipid membrane of erythrocytes\",\"authors\":\"Ivan T. Ivanov DSc, Boyana K. Paarvanova PhD\",\"doi\":\"10.1002/bem.22491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, β<sub>sp</sub> (1.4 MHz) and γ1<sub>sp</sub> (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the β<sub>sp</sub> relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1<sub>sp</sub> relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the β<sub>sp</sub> and γ1<sub>sp</sub> relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the β<sub>sp</sub> relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1<sub>sp</sub> relaxation.</p>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":\"45 2\",\"pages\":\"58-69\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22491\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22491","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
Band 3蛋白和糖蛋白C是人红细胞脂质膜的两种主要组成蛋白。它们从下面连接到弹性丝状谱蛋白网络上,这是第三种主要的红细胞膜蛋白。附着物与谱蛋白的结合特性影响红细胞的形状和可变形性。我们通过测量最近发现的两种射频介电弛豫(βsp (1.4 MHz)和γ1sp (9 MHz))的强度来研究波段3和糖蛋白C对谱蛋白的附着,这两种弛豫可以观察到介质中红细胞复导纳的变化。在pH为5.2的培养基中,以及在含有质子物质(甲酰胺、甲基甲酰胺或尿素)的培养基中,βsp的松弛受到抑制,这是由于糖蛋白C与谱蛋白分离所致。在pH为9.2的培养基中,我们观察到γ - 1sp弛豫的抑制作用,这是由于波段3从光谱蛋白上脱离,在含有非质子物质二氟吡啶、二甲基solfoxide、二甲基甲酰胺、丙酮、四(4-氟苯基)硼酸钠、氯丙嗪、噻嗪和三氟哌嗪的培养基中也可以看到。粘源共溶剂(甘油、乙二醇或i-赤藓糖醇)抑制了βsp和γ1sp弛豫,显著降低了它们的特征频率。我们的观察表明,糖蛋白C与谱蛋白的连接具有亲核中心,其饱和断开了这种连接并抑制了βsp弛豫,而在波段3-谱蛋白的连接位点,是亲电中心的饱和削弱了这种连接并抑制了γ1sp弛豫。
Radiofrequency dielectric spectroscopy study: Effects of pH, hydrogen bond donors and acceptors on the attachment of spectrin skeleton to the lipid membrane of erythrocytes
Band 3 protein and glycophorin C are the two major integral proteins of the lipid membrane of human red blood cells (RBCs). They are attached from below to a network of elastic filamentous spectrin, the third major RBC membrane protein. The binding properties of the attachments to spectrin affect the shape and deformability of RBCs. We addressed band 3 and glycophorin C attachments to spectrin by measuring the strength of two recently discovered radiofrequency dielectric relaxations, βsp (1.4 MHz) and γ1sp (9 MHz), that are observable as changes in the complex admittance of RBCs in medium. In medium at pH 5.2, and also in media with protic substances (formamide, methylformamide, or urea), the βsp relaxation became inhibited that is attributable to detachment of glycophorin C from spectrin. In medium at pH 9.2, we observed inhibition of γ1sp relaxation attributable to detachment of band 3 from spectrin, as also was seen in media with aprotic substances difluoropyridine, dimethylsolfoxide, dimethylformamide, acetone, sodium tetrakis(4-fluorophenyl)borate), chlorpromazine, thioridazine and trifluopiperazine. The viscogenic cosolvents (glycerol, ethylene glycol, or i-erythritol) inhibited both the βsp and γ1sp relaxations and significantly lowered their characteristic frequencies. Our observations indicate that the glycophorin C attachment to spectrin has nucleophilic centers whose saturation disconnects this attachment and inhibits the βsp relaxation, whereas at band 3-spectrin attachment site, it is the saturation of electrophilic centers that weakens this attachment and inhibits the γ1sp relaxation.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.