{"title":"草履虫遗传学、基因组学和进化。","authors":"Hongan Long, Parul Johri, Jean-Francois Gout, Jiahao Ni, Yue Hao, Timothy Licknack, Yaohai Wang, Jiao Pan, Berenice Jiménez-Marín, Michael Lynch","doi":"10.1146/annurev-genet-071819-104035","DOIUrl":null,"url":null,"abstract":"<p><p>The ciliate genus <i>Paramecium</i> served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. <i>Paramecium</i> species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of <i>Paramecium</i> research, the ancient <i>Paramecium aurelia</i> species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"57 ","pages":"391-410"},"PeriodicalIF":8.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334263/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Paramecium</i> Genetics, Genomics, and Evolution.\",\"authors\":\"Hongan Long, Parul Johri, Jean-Francois Gout, Jiahao Ni, Yue Hao, Timothy Licknack, Yaohai Wang, Jiao Pan, Berenice Jiménez-Marín, Michael Lynch\",\"doi\":\"10.1146/annurev-genet-071819-104035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ciliate genus <i>Paramecium</i> served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. <i>Paramecium</i> species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of <i>Paramecium</i> research, the ancient <i>Paramecium aurelia</i> species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.</p>\",\"PeriodicalId\":8035,\"journal\":{\"name\":\"Annual review of genetics\",\"volume\":\"57 \",\"pages\":\"391-410\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334263/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genet-071819-104035\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-071819-104035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The ciliate genus Paramecium served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. Paramecium species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of Paramecium research, the ancient Paramecium aurelia species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.
期刊介绍:
The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.