α-生育酚聚乙二醇1000琥珀酸基阳离子脂质体用于MDA-MB-231三阴性乳腺癌细胞株的胞内递送阿霉素。

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Assay and drug development technologies Pub Date : 2023-11-01 Epub Date: 2023-11-21 DOI:10.1089/adt.2023.067
Pallavi Sandal, Preeti Patel, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi
{"title":"α-生育酚聚乙二醇1000琥珀酸基阳离子脂质体用于MDA-MB-231三阴性乳腺癌细胞株的胞内递送阿霉素。","authors":"Pallavi Sandal, Preeti Patel, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.1089/adt.2023.067","DOIUrl":null,"url":null,"abstract":"<p><p><i>Present research work reports the development of doxorubicin (DOX) loaded α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes. The developed formulation was evaluated for its anticancer potential and intracellular uptake against the MDA-MB-231 breast cancer cell line. Moreover, hemocompatibility studies were also done on human blood red blood cells for the determination of blood compatibility. The prepared doxorubicin-loaded TPGS liposomes (DOX-LIPO-TPGS) and doxorubicin-loaded cationic liposomes (DOX-LIPO<sup>+</sup>-TPGS) reveal vesicle size (177.5 ± 2.5 and 201.7 ± 2.3 nm), polydispersity index (0.189 ± 0.01 and 0.218 ± 0.02), zeta potential (-36.9 ± 0.7 and 42 ± 0.9 mv), and % entrapment efficiency (65.88% ± 3.7% and 74.5% ± 3.9%). Furthermore,</i> in vitro<i>, drug release kinetics of the drug alone and drug from formulation shows sustained release behavior of developed formulation with 99.98% in 12 h and 80.98% release of the drug in 72 h, respectively. In addition, cytotoxicity studies and cellular DOX uptake on the MDA-MB-231 breast cancer cell line depict higher cytotoxic and drug uptake potential with better hemocompatibility of DOX-LIPO<sup>+</sup>-TPGS with respect to DOX. The data from the study revealed that TPGS plays an important role in enhancing the formulation's quality attributes like stability, drug release, cytotoxicity, and hemocompatibility behavior. This may serve that TPGS-coated cationic liposome as a vital candidate for the treatment of cancer and drug delivery in case of breast cancer.</i></p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"α-Tocopherol Polyethylene Glycol 1000 Succinate-Based Cationic Liposome for the Intracellular Delivery of Doxorubicin in MDA-MB-231 Triple-Negative Breast Cancer Cell Line.\",\"authors\":\"Pallavi Sandal, Preeti Patel, Dilpreet Singh, Ghanshyam Das Gupta, Balak Das Kurmi\",\"doi\":\"10.1089/adt.2023.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Present research work reports the development of doxorubicin (DOX) loaded α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes. The developed formulation was evaluated for its anticancer potential and intracellular uptake against the MDA-MB-231 breast cancer cell line. Moreover, hemocompatibility studies were also done on human blood red blood cells for the determination of blood compatibility. The prepared doxorubicin-loaded TPGS liposomes (DOX-LIPO-TPGS) and doxorubicin-loaded cationic liposomes (DOX-LIPO<sup>+</sup>-TPGS) reveal vesicle size (177.5 ± 2.5 and 201.7 ± 2.3 nm), polydispersity index (0.189 ± 0.01 and 0.218 ± 0.02), zeta potential (-36.9 ± 0.7 and 42 ± 0.9 mv), and % entrapment efficiency (65.88% ± 3.7% and 74.5% ± 3.9%). Furthermore,</i> in vitro<i>, drug release kinetics of the drug alone and drug from formulation shows sustained release behavior of developed formulation with 99.98% in 12 h and 80.98% release of the drug in 72 h, respectively. In addition, cytotoxicity studies and cellular DOX uptake on the MDA-MB-231 breast cancer cell line depict higher cytotoxic and drug uptake potential with better hemocompatibility of DOX-LIPO<sup>+</sup>-TPGS with respect to DOX. The data from the study revealed that TPGS plays an important role in enhancing the formulation's quality attributes like stability, drug release, cytotoxicity, and hemocompatibility behavior. This may serve that TPGS-coated cationic liposome as a vital candidate for the treatment of cancer and drug delivery in case of breast cancer.</i></p>\",\"PeriodicalId\":8586,\"journal\":{\"name\":\"Assay and drug development technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assay and drug development technologies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/adt.2023.067\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究报道了阿霉素(DOX)负载α-生育酚聚乙二醇1000琥珀酸酯(TPGS)包被阳离子脂质体的研制。开发的配方被评估其抗癌潜力和对MDA-MB-231乳腺癌细胞系的细胞内摄取。此外,还对人体血液红细胞进行了血液相容性研究,以确定血液相容性。制备的多柔比星载TPGS脂质体(dox - lipoo -TPGS)和多柔比星载阳离子脂质体(DOX-LIPO+-TPGS)的囊泡大小分别为177.5±2.5 nm和201.7±2.3 nm,多分散性指数分别为0.189±0.01和0.218±0.02,zeta电位分别为-36.9±0.7和42±0.9 mv,包封率分别为65.88%±3.7%和74.5%±3.9%。体外药物释放动力学研究表明,该制剂12 h缓释99.98%,72 h缓释80.98%。此外,MDA-MB-231乳腺癌细胞系的细胞毒性研究和细胞DOX摄取表明,DOX- lipo +-TPGS对DOX具有更高的细胞毒性和药物摄取潜力,并且血液相容性更好。研究数据显示,TPGS在提高制剂的稳定性、药物释放、细胞毒性和血液相容性行为等质量属性方面发挥着重要作用。这可能为tpgs包被的阳离子脂质体作为癌症治疗和乳腺癌给药的重要候选者提供服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
α-Tocopherol Polyethylene Glycol 1000 Succinate-Based Cationic Liposome for the Intracellular Delivery of Doxorubicin in MDA-MB-231 Triple-Negative Breast Cancer Cell Line.

Present research work reports the development of doxorubicin (DOX) loaded α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes. The developed formulation was evaluated for its anticancer potential and intracellular uptake against the MDA-MB-231 breast cancer cell line. Moreover, hemocompatibility studies were also done on human blood red blood cells for the determination of blood compatibility. The prepared doxorubicin-loaded TPGS liposomes (DOX-LIPO-TPGS) and doxorubicin-loaded cationic liposomes (DOX-LIPO+-TPGS) reveal vesicle size (177.5 ± 2.5 and 201.7 ± 2.3 nm), polydispersity index (0.189 ± 0.01 and 0.218 ± 0.02), zeta potential (-36.9 ± 0.7 and 42 ± 0.9 mv), and % entrapment efficiency (65.88% ± 3.7% and 74.5% ± 3.9%). Furthermore, in vitro, drug release kinetics of the drug alone and drug from formulation shows sustained release behavior of developed formulation with 99.98% in 12 h and 80.98% release of the drug in 72 h, respectively. In addition, cytotoxicity studies and cellular DOX uptake on the MDA-MB-231 breast cancer cell line depict higher cytotoxic and drug uptake potential with better hemocompatibility of DOX-LIPO+-TPGS with respect to DOX. The data from the study revealed that TPGS plays an important role in enhancing the formulation's quality attributes like stability, drug release, cytotoxicity, and hemocompatibility behavior. This may serve that TPGS-coated cationic liposome as a vital candidate for the treatment of cancer and drug delivery in case of breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Assay and drug development technologies
Assay and drug development technologies 医学-生化研究方法
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application. ASSAY and Drug Development Technologies coverage includes: -Assay design, target development, and high-throughput technologies- Hit to Lead optimization and medicinal chemistry through preclinical candidate selection- Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis- Approaches to assays configured for gene families, inherited, and infectious diseases- Assays and strategies for adapting model organisms to drug discovery- The use of stem cells as models of disease- Translation of phenotypic outputs to target identification- Exploration and mechanistic studies of the technical basis for assay and screening artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信