不同生物修复措施对冬小麦和油菜种植土壤物理性质和CO2排放的影响

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2023-11-27 DOI:10.5194/soil-9-593-2023
Sidona Buragienė, Egidijus Šarauskis, Aida Adamavičienė, Kęstutis Romaneckas, Kristina Lekavičienė, Daiva Rimkuvienė, Vilma Naujokienė
{"title":"不同生物修复措施对冬小麦和油菜种植土壤物理性质和CO2排放的影响","authors":"Sidona Buragienė, Egidijus Šarauskis, Aida Adamavičienė, Kęstutis Romaneckas, Kristina Lekavičienė, Daiva Rimkuvienė, Vilma Naujokienė","doi":"10.5194/soil-9-593-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The introduction of innovative technologies in agriculture is key not only to improving the efficiency of agricultural production and crop yields and quality but also to balancing energy use and preserving a cleaner environment. Biopreparations are environmentally friendly means of restoring the vitality of the soil in which plants can thrive. Biopreparations have an impact on soil health and alter greenhouse gas emissions. The aim of this study was to investigate the effects of different biopreparations on soil porosity, temperature, and CO2 (carbon dioxide) emissions from the soil in northeast Europe (Lithuania) when growing winter wheat and oilseed rape. The experimental studies were carried out over 3 years, and each spring, after the resumption of winter crops, the soil surface was sprayed with biopreparations of different properties or with mixtures of biopreparations under seven scenarios, with one scenario left as a control. Soil porosity, temperature, and CO2 emissions from the soil were measured regularly every month from April to August. The application of the biopreparations showed a cumulative effect on the soil properties. In the third year of the study, the total porosity of the soil was higher in all scenarios compared to the control, ranging between 51 % and 74 %. The aeration porosity of the soil was also higher in all years of the study than in the control, although no significant differences were obtained. The results of the studies on CO2 emissions from the soil showed that, in the first year, the application of the biopreparations increased emissions compared to the control. However, when assessing the cumulative effect of the biopreparations on soil respiration intensity, it was found that, in the third year, most of the biopreparations led to a reduction in CO2 emissions compared to the control. The lowest emissions were achieved with the biopreparations consisting of essential oils of plants, 40 species of various herbs extracts, marine algae extracts, Azospirillum sp., Frateuria aurentia, Bacillus megaterium, mineral oils, Azotobacter vinelandi, humic acid, gibberellic acid, sodium molybdate, Azototbacter chroococcum, Azospirillum brasilense, etc. Evaluating the effectiveness of biopreparations on soil porosity, temperature, and CO2 emissions from the soil, it can be stated that the best effect was achieved in all 3 research years in using biopreparations with Azotobacter chroococcum, Azotospirilum brasilense, various herbs, marine algae extracts, oils of plants, and mineral substances. The multiple-regression model showed that soil temperature has a greater influence on the variation of CO2 emissions than soil aeration porosity.","PeriodicalId":48610,"journal":{"name":"Soil","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of different biopreparations on soil physical properties and CO2 emissions when growing winter wheat and oilseed rape\",\"authors\":\"Sidona Buragienė, Egidijus Šarauskis, Aida Adamavičienė, Kęstutis Romaneckas, Kristina Lekavičienė, Daiva Rimkuvienė, Vilma Naujokienė\",\"doi\":\"10.5194/soil-9-593-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The introduction of innovative technologies in agriculture is key not only to improving the efficiency of agricultural production and crop yields and quality but also to balancing energy use and preserving a cleaner environment. Biopreparations are environmentally friendly means of restoring the vitality of the soil in which plants can thrive. Biopreparations have an impact on soil health and alter greenhouse gas emissions. The aim of this study was to investigate the effects of different biopreparations on soil porosity, temperature, and CO2 (carbon dioxide) emissions from the soil in northeast Europe (Lithuania) when growing winter wheat and oilseed rape. The experimental studies were carried out over 3 years, and each spring, after the resumption of winter crops, the soil surface was sprayed with biopreparations of different properties or with mixtures of biopreparations under seven scenarios, with one scenario left as a control. Soil porosity, temperature, and CO2 emissions from the soil were measured regularly every month from April to August. The application of the biopreparations showed a cumulative effect on the soil properties. In the third year of the study, the total porosity of the soil was higher in all scenarios compared to the control, ranging between 51 % and 74 %. The aeration porosity of the soil was also higher in all years of the study than in the control, although no significant differences were obtained. The results of the studies on CO2 emissions from the soil showed that, in the first year, the application of the biopreparations increased emissions compared to the control. However, when assessing the cumulative effect of the biopreparations on soil respiration intensity, it was found that, in the third year, most of the biopreparations led to a reduction in CO2 emissions compared to the control. The lowest emissions were achieved with the biopreparations consisting of essential oils of plants, 40 species of various herbs extracts, marine algae extracts, Azospirillum sp., Frateuria aurentia, Bacillus megaterium, mineral oils, Azotobacter vinelandi, humic acid, gibberellic acid, sodium molybdate, Azototbacter chroococcum, Azospirillum brasilense, etc. Evaluating the effectiveness of biopreparations on soil porosity, temperature, and CO2 emissions from the soil, it can be stated that the best effect was achieved in all 3 research years in using biopreparations with Azotobacter chroococcum, Azotospirilum brasilense, various herbs, marine algae extracts, oils of plants, and mineral substances. The multiple-regression model showed that soil temperature has a greater influence on the variation of CO2 emissions than soil aeration porosity.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/soil-9-593-2023\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-9-593-2023","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要。在农业中引进创新技术不仅是提高农业生产效率、作物产量和质量的关键,也是平衡能源使用和保持更清洁环境的关键。生物修复是恢复土壤活力的环保手段,植物可以在土壤中茁壮成长。生物修复对土壤健康有影响,并改变温室气体排放。本研究的目的是研究不同生物修复对东北欧洲(立陶宛)种植冬小麦和油菜时土壤孔隙度、温度和CO2(二氧化碳)排放的影响。试验研究进行了3年,每年春季,冬茬作物恢复后,在7种情况下,在土壤表面喷洒不同性质的生物修复剂或混合生物修复剂,并留下一种情况作为对照。从4月到8月,每月定期测量土壤孔隙度、温度和二氧化碳排放量。生物修复剂的施用对土壤性状具有累积效应。在研究的第三年,与对照相比,所有情况下土壤的总孔隙度都更高,范围在51%到74%之间。土壤的通气性孔隙度在研究的所有年份也高于对照,尽管没有显著差异。土壤二氧化碳排放的研究结果表明,在第一年,与对照相比,生物修复剂的应用增加了排放量。然而,当评估生物修复对土壤呼吸强度的累积效应时,发现在第三年时,与对照相比,大多数生物修复导致二氧化碳排放量减少。由植物精油、40种不同草本植物提取物、海藻提取物、固氮螺旋藻、金银花芽孢杆菌、巨型芽孢杆菌、矿物油、葡萄固氮菌、腐植酸、赤霉素酸、钼酸钠、绿孢固氮菌、巴西固氮螺旋藻等组成的生物修复剂的排放最低。通过评价生物修复剂对土壤孔隙度、温度和土壤CO2排放的影响,可以得出,在所有3个研究年度中,使用含固氮细菌、巴西固氮螺旋藻、各种草药、海藻提取物、植物油和矿物质的生物修复剂效果最好。多元回归模型表明,土壤温度对CO2排放变化的影响大于土壤通气孔隙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of different biopreparations on soil physical properties and CO2 emissions when growing winter wheat and oilseed rape
Abstract. The introduction of innovative technologies in agriculture is key not only to improving the efficiency of agricultural production and crop yields and quality but also to balancing energy use and preserving a cleaner environment. Biopreparations are environmentally friendly means of restoring the vitality of the soil in which plants can thrive. Biopreparations have an impact on soil health and alter greenhouse gas emissions. The aim of this study was to investigate the effects of different biopreparations on soil porosity, temperature, and CO2 (carbon dioxide) emissions from the soil in northeast Europe (Lithuania) when growing winter wheat and oilseed rape. The experimental studies were carried out over 3 years, and each spring, after the resumption of winter crops, the soil surface was sprayed with biopreparations of different properties or with mixtures of biopreparations under seven scenarios, with one scenario left as a control. Soil porosity, temperature, and CO2 emissions from the soil were measured regularly every month from April to August. The application of the biopreparations showed a cumulative effect on the soil properties. In the third year of the study, the total porosity of the soil was higher in all scenarios compared to the control, ranging between 51 % and 74 %. The aeration porosity of the soil was also higher in all years of the study than in the control, although no significant differences were obtained. The results of the studies on CO2 emissions from the soil showed that, in the first year, the application of the biopreparations increased emissions compared to the control. However, when assessing the cumulative effect of the biopreparations on soil respiration intensity, it was found that, in the third year, most of the biopreparations led to a reduction in CO2 emissions compared to the control. The lowest emissions were achieved with the biopreparations consisting of essential oils of plants, 40 species of various herbs extracts, marine algae extracts, Azospirillum sp., Frateuria aurentia, Bacillus megaterium, mineral oils, Azotobacter vinelandi, humic acid, gibberellic acid, sodium molybdate, Azototbacter chroococcum, Azospirillum brasilense, etc. Evaluating the effectiveness of biopreparations on soil porosity, temperature, and CO2 emissions from the soil, it can be stated that the best effect was achieved in all 3 research years in using biopreparations with Azotobacter chroococcum, Azotospirilum brasilense, various herbs, marine algae extracts, oils of plants, and mineral substances. The multiple-regression model showed that soil temperature has a greater influence on the variation of CO2 emissions than soil aeration porosity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信