{"title":"聚酰胺胺基多柔比星负载聚合物纳米载体的研制、表征及对肝癌细胞系的体外评价。","authors":"Nadia Mazhar, Zeeshan Danish, Hamid Saeed","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In order to achieve the benefits of targeted drug delivery, this study intended to encapsulate doxorubicin in a linear polyamidoamine and its PEGylated co-polymer. The drug was loaded by using the emulsion solvent evaporation method. By adjusting the doxorubicin to polymer ratios to 1:10, 1:20 and 1:30, three formulations of each polymer/copolymer were prepared. The drug release profile was investigated using phosphate buffered saline. In vitro cytotoxicity investigation was executed on liver cancer cell line (Hep G2 cell lines) by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The outcome demonstrated that doxorubicin had been successfully loaded on polyamidoamine and its PEGylated co-polymer with a drug loading efficiency of about 90%. Nanocarrier sizes were between 245±1.10 nm -579±1.00 nm and the zeta potential range was +22.4±0.5 mV-+37.9±0.3 mV. In-vitro drug release investigations revealed a characteristic pH-dependent drug release. The cytotoxicity testing of optimal formulation revealed that the doxorubicin was successfully released from the formulations and exerted therapeutic effect. According to our research, doxorubicin could be loaded onto linear polyamidoamines for potent antitumor effects on the target liver cancer cell lines (Hep G2).</p>","PeriodicalId":19971,"journal":{"name":"Pakistan journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of polyamidoamine based doxorubicin loaded polymeric nanocarriers and in-vitro evaluation on liver cancer cell lines.\",\"authors\":\"Nadia Mazhar, Zeeshan Danish, Hamid Saeed\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to achieve the benefits of targeted drug delivery, this study intended to encapsulate doxorubicin in a linear polyamidoamine and its PEGylated co-polymer. The drug was loaded by using the emulsion solvent evaporation method. By adjusting the doxorubicin to polymer ratios to 1:10, 1:20 and 1:30, three formulations of each polymer/copolymer were prepared. The drug release profile was investigated using phosphate buffered saline. In vitro cytotoxicity investigation was executed on liver cancer cell line (Hep G2 cell lines) by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The outcome demonstrated that doxorubicin had been successfully loaded on polyamidoamine and its PEGylated co-polymer with a drug loading efficiency of about 90%. Nanocarrier sizes were between 245±1.10 nm -579±1.00 nm and the zeta potential range was +22.4±0.5 mV-+37.9±0.3 mV. In-vitro drug release investigations revealed a characteristic pH-dependent drug release. The cytotoxicity testing of optimal formulation revealed that the doxorubicin was successfully released from the formulations and exerted therapeutic effect. According to our research, doxorubicin could be loaded onto linear polyamidoamines for potent antitumor effects on the target liver cancer cell lines (Hep G2).</p>\",\"PeriodicalId\":19971,\"journal\":{\"name\":\"Pakistan journal of pharmaceutical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Development and characterization of polyamidoamine based doxorubicin loaded polymeric nanocarriers and in-vitro evaluation on liver cancer cell lines.
In order to achieve the benefits of targeted drug delivery, this study intended to encapsulate doxorubicin in a linear polyamidoamine and its PEGylated co-polymer. The drug was loaded by using the emulsion solvent evaporation method. By adjusting the doxorubicin to polymer ratios to 1:10, 1:20 and 1:30, three formulations of each polymer/copolymer were prepared. The drug release profile was investigated using phosphate buffered saline. In vitro cytotoxicity investigation was executed on liver cancer cell line (Hep G2 cell lines) by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. The outcome demonstrated that doxorubicin had been successfully loaded on polyamidoamine and its PEGylated co-polymer with a drug loading efficiency of about 90%. Nanocarrier sizes were between 245±1.10 nm -579±1.00 nm and the zeta potential range was +22.4±0.5 mV-+37.9±0.3 mV. In-vitro drug release investigations revealed a characteristic pH-dependent drug release. The cytotoxicity testing of optimal formulation revealed that the doxorubicin was successfully released from the formulations and exerted therapeutic effect. According to our research, doxorubicin could be loaded onto linear polyamidoamines for potent antitumor effects on the target liver cancer cell lines (Hep G2).
期刊介绍:
Pakistan Journal of Pharmaceutical Sciences (PJPS) is a peer reviewed multi-disciplinary pharmaceutical sciences journal. The PJPS had its origin in 1988 from the Faculty of Pharmacy, University of Karachi as a biannual journal, frequency converted as quarterly in 2005, and now PJPS is being published as bi-monthly from January 2013.
PJPS covers Biological, Pharmaceutical and Medicinal Research (Drug Delivery, Pharmacy Management, Molecular Biology, Biochemical, Pharmacology, Pharmacokinetics, Phytochemical, Bio-analytical, Therapeutics, Biotechnology and research on nano particles.