{"title":"通过单细胞技术,一次一个细胞地解剖病毒感染。","authors":"","doi":"10.1016/j.micinf.2023.105268","DOIUrl":null,"url":null,"abstract":"<div><p>The meteoric rise of single-cell genomic technologies, especially of single-cell RNA-sequencing (scRNA-seq), has revolutionized several fields of cellular biology, especially immunology, oncology, neuroscience and developmental biology. While the field of virology has been relatively slow to adopt these technological advances, many works have shed new light on the fascinating interactions of viruses with their hosts using single cell technologies. One clear example is the multitude of studies dissecting viral infections by single-cell sequencing technologies during the recent COVID-19 pandemic. In this review we will detail the advantages of studying viral infections at a single-cell level, how scRNA-seq technologies can be used to achieve this goal and the associated technical limitations, challenges and solutions. We will highlight recent biological discoveries and breakthroughs in virology enabled by single-cell analyses and will end by discussing possible future directions of the field. Given the rate of publications in this exciting new frontier of virology, we have likely missed some important works and we apologize in advance to the researchers whose work we have failed to cite.</p></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161131/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dissecting viral infections, one cell at a time, by single-cell technologies\",\"authors\":\"\",\"doi\":\"10.1016/j.micinf.2023.105268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The meteoric rise of single-cell genomic technologies, especially of single-cell RNA-sequencing (scRNA-seq), has revolutionized several fields of cellular biology, especially immunology, oncology, neuroscience and developmental biology. While the field of virology has been relatively slow to adopt these technological advances, many works have shed new light on the fascinating interactions of viruses with their hosts using single cell technologies. One clear example is the multitude of studies dissecting viral infections by single-cell sequencing technologies during the recent COVID-19 pandemic. In this review we will detail the advantages of studying viral infections at a single-cell level, how scRNA-seq technologies can be used to achieve this goal and the associated technical limitations, challenges and solutions. We will highlight recent biological discoveries and breakthroughs in virology enabled by single-cell analyses and will end by discussing possible future directions of the field. Given the rate of publications in this exciting new frontier of virology, we have likely missed some important works and we apologize in advance to the researchers whose work we have failed to cite.</p></div>\",\"PeriodicalId\":18497,\"journal\":{\"name\":\"Microbes and Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1286457923001715\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1286457923001715","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Dissecting viral infections, one cell at a time, by single-cell technologies
The meteoric rise of single-cell genomic technologies, especially of single-cell RNA-sequencing (scRNA-seq), has revolutionized several fields of cellular biology, especially immunology, oncology, neuroscience and developmental biology. While the field of virology has been relatively slow to adopt these technological advances, many works have shed new light on the fascinating interactions of viruses with their hosts using single cell technologies. One clear example is the multitude of studies dissecting viral infections by single-cell sequencing technologies during the recent COVID-19 pandemic. In this review we will detail the advantages of studying viral infections at a single-cell level, how scRNA-seq technologies can be used to achieve this goal and the associated technical limitations, challenges and solutions. We will highlight recent biological discoveries and breakthroughs in virology enabled by single-cell analyses and will end by discussing possible future directions of the field. Given the rate of publications in this exciting new frontier of virology, we have likely missed some important works and we apologize in advance to the researchers whose work we have failed to cite.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.