Meiming Cai, Shuanglin Li, Xingru Zhang, Weibing Xie, Jianfeng Shi, Xi Yuan, Jun Yao, Bofeng Zhu
{"title":"基于新型多路DIP系统的中国朝鲜族祖先信息分析","authors":"Meiming Cai, Shuanglin Li, Xingru Zhang, Weibing Xie, Jianfeng Shi, Xi Yuan, Jun Yao, Bofeng Zhu","doi":"10.1007/s00239-023-10143-y","DOIUrl":null,"url":null,"abstract":"<p><p>Deletion/insertion polymorphism (DIP) is one of the more promising genetic markers in the field of forensic genetics for personal identification and biogeographic ancestry inference. In this research, we used an in-house developed ancestry-informative marker-DIP system, including 56 autosomal diallelic DIPs, three Y-chromosomal DIPs, and an Amelogenin gene, to analyze the genetic polymorphism and ancestral composition of the Chinese Korean group, as well as to explore its genetic relationships with the 26 reference populations. The results showed that this novel panel exhibited high genetic polymorphism in the studied Korean group and could be effectively applied for forensic individual identification in the Korean group. In addition, the results of multiple population genetic analyses indicated that the ancestral component of the Korean group was dominated by northern East Asia. Moreover, the Korean group was more closely related to the East Asian populations, especially to the Japanese population in Tokyo. This study enriched the genetic data of the Korean ethnic group in China and provided information on the ancestry of the Korean group from the perspective of population genetics.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"922-934"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ancestral Information Analysis of Chinese Korean Ethnic Group via a Novel Multiplex DIP System.\",\"authors\":\"Meiming Cai, Shuanglin Li, Xingru Zhang, Weibing Xie, Jianfeng Shi, Xi Yuan, Jun Yao, Bofeng Zhu\",\"doi\":\"10.1007/s00239-023-10143-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deletion/insertion polymorphism (DIP) is one of the more promising genetic markers in the field of forensic genetics for personal identification and biogeographic ancestry inference. In this research, we used an in-house developed ancestry-informative marker-DIP system, including 56 autosomal diallelic DIPs, three Y-chromosomal DIPs, and an Amelogenin gene, to analyze the genetic polymorphism and ancestral composition of the Chinese Korean group, as well as to explore its genetic relationships with the 26 reference populations. The results showed that this novel panel exhibited high genetic polymorphism in the studied Korean group and could be effectively applied for forensic individual identification in the Korean group. In addition, the results of multiple population genetic analyses indicated that the ancestral component of the Korean group was dominated by northern East Asia. Moreover, the Korean group was more closely related to the East Asian populations, especially to the Japanese population in Tokyo. This study enriched the genetic data of the Korean ethnic group in China and provided information on the ancestry of the Korean group from the perspective of population genetics.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"922-934\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-023-10143-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10143-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ancestral Information Analysis of Chinese Korean Ethnic Group via a Novel Multiplex DIP System.
Deletion/insertion polymorphism (DIP) is one of the more promising genetic markers in the field of forensic genetics for personal identification and biogeographic ancestry inference. In this research, we used an in-house developed ancestry-informative marker-DIP system, including 56 autosomal diallelic DIPs, three Y-chromosomal DIPs, and an Amelogenin gene, to analyze the genetic polymorphism and ancestral composition of the Chinese Korean group, as well as to explore its genetic relationships with the 26 reference populations. The results showed that this novel panel exhibited high genetic polymorphism in the studied Korean group and could be effectively applied for forensic individual identification in the Korean group. In addition, the results of multiple population genetic analyses indicated that the ancestral component of the Korean group was dominated by northern East Asia. Moreover, the Korean group was more closely related to the East Asian populations, especially to the Japanese population in Tokyo. This study enriched the genetic data of the Korean ethnic group in China and provided information on the ancestry of the Korean group from the perspective of population genetics.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.