Dardo Dallachiesa, O Mario Aguilar, Mauricio J Lozano
{"title":"改进含有LysM结构域的植物蛋白的检测和系统发育分析。","authors":"Dardo Dallachiesa, O Mario Aguilar, Mauricio J Lozano","doi":"10.1071/FP23131","DOIUrl":null,"url":null,"abstract":"<p><p>Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved detection and phylogenetic analysis of plant proteins containing LysM domains.\",\"authors\":\"Dardo Dallachiesa, O Mario Aguilar, Mauricio J Lozano\",\"doi\":\"10.1071/FP23131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP23131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Improved detection and phylogenetic analysis of plant proteins containing LysM domains.
Plants perceive N-acetyl-d-glucosamine-containing oligosaccharides that play a role in the interaction with bacteria and fungi, through cell-surface receptors containing a tight bundle of three LysM domains in their extracellular region. However, the identification of LysM domains of receptor-like kinases (RLK)/receptor-like proteins (RLP) using sequence based methods has led to some ambiguity, as some proteins have been annotated with only one or two LysM domains. This missing annotation was likely produced by the failure of the LysM hidden Markov model (HMM) from the Pfam database to correctly identify some LysM domains in proteins of plant origin. In this work, we provide improved HMMs for LysM domain detection in plants, that were built from the structural alignment of manually curated LysM domain structures from the Protein Data Bank and AlphaFold Protein Structure Database. Furthermore, we evaluated different sets of ligand-specific HMMs that were able to correctly classify a limited set of fully characterised RLK/Ps by their ligand specificity. In contrast, the phylogenetic analysis of the extracellular region of RLK/Ps, or of their individual LysM domains, was unable to discriminate these proteins by their ligand specificity. The HMMs reported here will allow a more sensitive detection of plant proteins containing LysM domains and help improve their characterisation.