Min-Yong Lee, Hi-Won Yoon, Min-Jae Lee, Kwang-Mahn Kim, Jae-Sung Kwon
{"title":"预混矿物三氧化二骨料基材的热物理性能及其与复合树脂的粘接。","authors":"Min-Yong Lee, Hi-Won Yoon, Min-Jae Lee, Kwang-Mahn Kim, Jae-Sung Kwon","doi":"10.4012/dmj.2023-163","DOIUrl":null,"url":null,"abstract":"<p><p>Dental bases require low thermal conductivity and good mechanical properties, such as bonding with composite resins. This study aims to elucidate the physicochemical properties of premixed mineral trioxide aggregate (MTA) for its suitability as a dental base and to explore the optimal adhesive strategy with composite resin. The thermal conductivity and compressive strength of this premixed MTA are 0.12 W/(m•K) and 93.76 MPa, respectively, Which are deemed adequate for its application as dental base. When bonded to composite resin, the use of 37% phosphoric acid etching before applying the Clearfil SE bond significantly reduced the bonding strength between composite resin and premixed MTA. This was because the compressive strength and Vickers hardness of premixed MTA decreased, and tricalcium silicate was dissolved from the surface during acid etching. Therefore, it is recommended to avoid using 37% phosphoric acid etching when bonding premixed MTA and composite resin as a dental base.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermophysical properties and bonding with composite resin of premixed mineral trioxide aggregate for use as base material.\",\"authors\":\"Min-Yong Lee, Hi-Won Yoon, Min-Jae Lee, Kwang-Mahn Kim, Jae-Sung Kwon\",\"doi\":\"10.4012/dmj.2023-163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dental bases require low thermal conductivity and good mechanical properties, such as bonding with composite resins. This study aims to elucidate the physicochemical properties of premixed mineral trioxide aggregate (MTA) for its suitability as a dental base and to explore the optimal adhesive strategy with composite resin. The thermal conductivity and compressive strength of this premixed MTA are 0.12 W/(m•K) and 93.76 MPa, respectively, Which are deemed adequate for its application as dental base. When bonded to composite resin, the use of 37% phosphoric acid etching before applying the Clearfil SE bond significantly reduced the bonding strength between composite resin and premixed MTA. This was because the compressive strength and Vickers hardness of premixed MTA decreased, and tricalcium silicate was dissolved from the surface during acid etching. Therefore, it is recommended to avoid using 37% phosphoric acid etching when bonding premixed MTA and composite resin as a dental base.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4012/dmj.2023-163\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermophysical properties and bonding with composite resin of premixed mineral trioxide aggregate for use as base material.
Dental bases require low thermal conductivity and good mechanical properties, such as bonding with composite resins. This study aims to elucidate the physicochemical properties of premixed mineral trioxide aggregate (MTA) for its suitability as a dental base and to explore the optimal adhesive strategy with composite resin. The thermal conductivity and compressive strength of this premixed MTA are 0.12 W/(m•K) and 93.76 MPa, respectively, Which are deemed adequate for its application as dental base. When bonded to composite resin, the use of 37% phosphoric acid etching before applying the Clearfil SE bond significantly reduced the bonding strength between composite resin and premixed MTA. This was because the compressive strength and Vickers hardness of premixed MTA decreased, and tricalcium silicate was dissolved from the surface during acid etching. Therefore, it is recommended to avoid using 37% phosphoric acid etching when bonding premixed MTA and composite resin as a dental base.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.