{"title":"基于望远镜图像的螺旋椭圆星系形态自动分类","authors":"M.J. Baumstark, G. Vinci","doi":"10.1016/j.ascom.2023.100770","DOIUrl":null,"url":null,"abstract":"<div><p>The classification of galaxy morphologies is an important step in the investigation of theories of hierarchical structure formation. While human expert visual classification remains quite effective and accurate, it cannot keep up with the massive influx of data from emerging sky surveys. A variety of approaches have been proposed to classify large numbers of galaxies; these approaches include crowdsourced visual classification, and automated and computational methods, such as machine learning methods based on designed morphology statistics and deep learning. In this work, we develop two novel galaxy morphology statistics, descent average and descent variance, which can be efficiently extracted from telescope galaxy images. We further propose simplified versions of the existing image statistics concentration, asymmetry, and clumpiness, which have been widely used in the literature of galaxy morphologies. We utilize the galaxy image data from the Sloan Digital Sky Survey to demonstrate the effective performance of our proposed image statistics at accurately detecting spiral and elliptical galaxies when used as features of a random forest classifier.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213133723000859/pdfft?md5=efb44e4a33cafdd5ab52dbae6bd64201&pid=1-s2.0-S2213133723000859-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Spiral-Elliptical automated galaxy morphology classification from telescope images\",\"authors\":\"M.J. Baumstark, G. Vinci\",\"doi\":\"10.1016/j.ascom.2023.100770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classification of galaxy morphologies is an important step in the investigation of theories of hierarchical structure formation. While human expert visual classification remains quite effective and accurate, it cannot keep up with the massive influx of data from emerging sky surveys. A variety of approaches have been proposed to classify large numbers of galaxies; these approaches include crowdsourced visual classification, and automated and computational methods, such as machine learning methods based on designed morphology statistics and deep learning. In this work, we develop two novel galaxy morphology statistics, descent average and descent variance, which can be efficiently extracted from telescope galaxy images. We further propose simplified versions of the existing image statistics concentration, asymmetry, and clumpiness, which have been widely used in the literature of galaxy morphologies. We utilize the galaxy image data from the Sloan Digital Sky Survey to demonstrate the effective performance of our proposed image statistics at accurately detecting spiral and elliptical galaxies when used as features of a random forest classifier.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213133723000859/pdfft?md5=efb44e4a33cafdd5ab52dbae6bd64201&pid=1-s2.0-S2213133723000859-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133723000859\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133723000859","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Spiral-Elliptical automated galaxy morphology classification from telescope images
The classification of galaxy morphologies is an important step in the investigation of theories of hierarchical structure formation. While human expert visual classification remains quite effective and accurate, it cannot keep up with the massive influx of data from emerging sky surveys. A variety of approaches have been proposed to classify large numbers of galaxies; these approaches include crowdsourced visual classification, and automated and computational methods, such as machine learning methods based on designed morphology statistics and deep learning. In this work, we develop two novel galaxy morphology statistics, descent average and descent variance, which can be efficiently extracted from telescope galaxy images. We further propose simplified versions of the existing image statistics concentration, asymmetry, and clumpiness, which have been widely used in the literature of galaxy morphologies. We utilize the galaxy image data from the Sloan Digital Sky Survey to demonstrate the effective performance of our proposed image statistics at accurately detecting spiral and elliptical galaxies when used as features of a random forest classifier.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.