Kun Liu , Xu Chen , Peng Zhan , Lianglong Da , Hui Wang , Wuhong Guo , Jingyi Liu , Lei Chen , Bing Liu , Guandong Gao , Deyan Tian
{"title":"近惯性内波放大和表面反射后混频增强的观测","authors":"Kun Liu , Xu Chen , Peng Zhan , Lianglong Da , Hui Wang , Wuhong Guo , Jingyi Liu , Lei Chen , Bing Liu , Guandong Gao , Deyan Tian","doi":"10.1016/j.pocean.2023.103177","DOIUrl":null,"url":null,"abstract":"<div><p>The overreflection process of near-inertial internal waves (NIWs) has been theoretically predicted for several decades; however, to the best of our knowledge, this phenomenon has never been comprehensively investigated in real ocean scenarios. Based on the buoy observations collected several days after the passage of Typhoon Lekima in the Yellow Sea, a NIW surface overreflection event is clearly captured. The observed NIWs undergo nearly total reflection meridionally but are amplified zonally after reflection by approximately 20% in amplitude and 56% in vertically integrated horizontal kinetic energy. Ray tracing analysis indicates that the NIW was generated in the wake of Typhoon Lekima in the area north of the Shandong Peninsula and may propagated to the buoy station as coastal-trapped internal Kelvin waves. A simulation using a slab mixed layer model suggests that local wind work was insufficient to generate the amplified NIWs. The temporal evolution of near-inertial energy also implies that the intensified near-inertial waves cannot be attributed to the spontaneous generation resulting from unbalanced flows or the parametric subharmonic instability of M<sub>2</sub> internal tides during the reflection period. We found a high temporal correlation between the zonal NIW enhancement and the duration of a meridional lens-type shear flow after reflection, which is consistent with the Stern’s overreflection theory (<span>Stern, 1977</span>) that perpendicular background shear flow can feed energy to the incident NIWs. This indicates that the enhanced NIW may be stimulated by the near-surface reflection and the rotation effect plays a crucial role in the NIWs overreflection process in the real ocean. Furthermore, enhanced instability are found between the ocean surface and the upper thermocline after reflection. This study provides observational evidence that the background field could inject energy into the near-inertial band through NIW overreflection process, and may shed some light on understanding upper ocean mixing caused by NIW reflection.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations of near-inertial internal wave amplification and enhanced mixing after surface reflection\",\"authors\":\"Kun Liu , Xu Chen , Peng Zhan , Lianglong Da , Hui Wang , Wuhong Guo , Jingyi Liu , Lei Chen , Bing Liu , Guandong Gao , Deyan Tian\",\"doi\":\"10.1016/j.pocean.2023.103177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The overreflection process of near-inertial internal waves (NIWs) has been theoretically predicted for several decades; however, to the best of our knowledge, this phenomenon has never been comprehensively investigated in real ocean scenarios. Based on the buoy observations collected several days after the passage of Typhoon Lekima in the Yellow Sea, a NIW surface overreflection event is clearly captured. The observed NIWs undergo nearly total reflection meridionally but are amplified zonally after reflection by approximately 20% in amplitude and 56% in vertically integrated horizontal kinetic energy. Ray tracing analysis indicates that the NIW was generated in the wake of Typhoon Lekima in the area north of the Shandong Peninsula and may propagated to the buoy station as coastal-trapped internal Kelvin waves. A simulation using a slab mixed layer model suggests that local wind work was insufficient to generate the amplified NIWs. The temporal evolution of near-inertial energy also implies that the intensified near-inertial waves cannot be attributed to the spontaneous generation resulting from unbalanced flows or the parametric subharmonic instability of M<sub>2</sub> internal tides during the reflection period. We found a high temporal correlation between the zonal NIW enhancement and the duration of a meridional lens-type shear flow after reflection, which is consistent with the Stern’s overreflection theory (<span>Stern, 1977</span>) that perpendicular background shear flow can feed energy to the incident NIWs. This indicates that the enhanced NIW may be stimulated by the near-surface reflection and the rotation effect plays a crucial role in the NIWs overreflection process in the real ocean. Furthermore, enhanced instability are found between the ocean surface and the upper thermocline after reflection. This study provides observational evidence that the background field could inject energy into the near-inertial band through NIW overreflection process, and may shed some light on understanding upper ocean mixing caused by NIW reflection.</p></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661123002203\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661123002203","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Observations of near-inertial internal wave amplification and enhanced mixing after surface reflection
The overreflection process of near-inertial internal waves (NIWs) has been theoretically predicted for several decades; however, to the best of our knowledge, this phenomenon has never been comprehensively investigated in real ocean scenarios. Based on the buoy observations collected several days after the passage of Typhoon Lekima in the Yellow Sea, a NIW surface overreflection event is clearly captured. The observed NIWs undergo nearly total reflection meridionally but are amplified zonally after reflection by approximately 20% in amplitude and 56% in vertically integrated horizontal kinetic energy. Ray tracing analysis indicates that the NIW was generated in the wake of Typhoon Lekima in the area north of the Shandong Peninsula and may propagated to the buoy station as coastal-trapped internal Kelvin waves. A simulation using a slab mixed layer model suggests that local wind work was insufficient to generate the amplified NIWs. The temporal evolution of near-inertial energy also implies that the intensified near-inertial waves cannot be attributed to the spontaneous generation resulting from unbalanced flows or the parametric subharmonic instability of M2 internal tides during the reflection period. We found a high temporal correlation between the zonal NIW enhancement and the duration of a meridional lens-type shear flow after reflection, which is consistent with the Stern’s overreflection theory (Stern, 1977) that perpendicular background shear flow can feed energy to the incident NIWs. This indicates that the enhanced NIW may be stimulated by the near-surface reflection and the rotation effect plays a crucial role in the NIWs overreflection process in the real ocean. Furthermore, enhanced instability are found between the ocean surface and the upper thermocline after reflection. This study provides observational evidence that the background field could inject energy into the near-inertial band through NIW overreflection process, and may shed some light on understanding upper ocean mixing caused by NIW reflection.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.