高精度的QCD测试,无尺度和方案歧义

IF 14.5 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Leonardo Di Giustino , Stanley J. Brodsky , Philip G. Ratcliffe , Xing-Gang Wu , Sheng-Quan Wang
{"title":"高精度的QCD测试,无尺度和方案歧义","authors":"Leonardo Di Giustino ,&nbsp;Stanley J. Brodsky ,&nbsp;Philip G. Ratcliffe ,&nbsp;Xing-Gang Wu ,&nbsp;Sheng-Quan Wang","doi":"10.1016/j.ppnp.2023.104092","DOIUrl":null,"url":null,"abstract":"<div><p><span>A key issue in making precise predictions in QCD is the uncertainty in setting the renormalization scale </span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> and thus determining the correct values of the QCD running coupling <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> at each order in the perturbative expansion of a QCD observable. It has often been conventional to simply set the renormalization scale to the typical scale of the process <span><math><mi>Q</mi></math></span> and vary it in the range <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mi>Q</mi><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>Q</mi><mo>]</mo></mrow></mrow></math></span> in order to estimate the theoretical error. This is the practice of Conventional Scale Setting (CSS). The resulting CSS prediction will however depend on the theorist’s choice of renormalization scheme and the resulting pQCD series will diverge factorially. It will also disagree with renormalization scale setting used in QED and electroweak theory thus precluding grand unification. A solution to the renormalization scale-setting problem is offered by the Principle of Maximum Conformality (PMC), which provides a systematic way to eliminate the renormalization scale-and-scheme dependence in perturbative calculations. The PMC method has rigorous theoretical foundations, it satisfies Renormalization Group Invariance (RGI) and preserves all self-consistency conditions derived from the renormalization group. The PMC cancels the renormalon growth, reduces to the Gell-Mann–Low scheme in the <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>→</mo><mn>0</mn></mrow></math></span> Abelian limit and leads to scale- and scheme-invariant results. The PMC has now been successfully applied to many high-energy processes. In this article we summarize recent developments and results in solving the renormalization scale and scheme ambiguities in perturbative QCD. In particular, we present a recently developed method the PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> and its applications, comparing the results with CSS. The method preserves the property of renormalizable SU(N)/U(1) gauge theories defined as <em>Intrinsic Conformality</em> (<em>iCF</em>).</p><p>This property underlies the scale invariance of physical observables and leads to a remarkably efficient method to solve the conventional renormalization scale ambiguity at every order in pQCD.</p><p>This new method reflects the underlying conformal properties displayed by pQCD at NNLO, eliminates the scheme dependence of pQCD predictions and is consistent with the general properties of the PMC. A new method to identify conformal and <span><math><mi>β</mi></math></span>-terms, which can be applied either to numerical or to theoretical calculations is also shown. We present results for the thrust and <span><math><mi>C</mi></math></span>-parameter distributions in <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span> annihilation showing errors and comparison with the CSS. We also show results for a recent innovative comparison between the CSS and the PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> applied to the thrust distribution investigating both the QCD conformal window and the QED <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>→</mo><mn>0</mn></mrow></math></span> limit. In order to determine the thrust distribution along the entire renormalization group flow from the highest energies to zero energy, we consider the number of flavors near the upper boundary of the conformal window. In this flavor-number regime the theory develops a perturbative infrared interacting fixed point. These results show that PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> leads to higher precision and introduces new interesting features in the PMC. In fact, this method preserves with continuity the position of the peak, showing perfect agreement with the experimental data already at NNLO.</p><p>We also show a detailed comparison of the PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> with the other PMC approaches: the multi-scale-setting approach (PMCm) and the single-scale-setting approach (PMCs) by comparing their predictions for three important fully integrated quantities <span><math><msub><mrow><mi>R</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow></msub></math></span> and <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>H</mi><mo>→</mo><mi>b</mi><mover><mrow><mi>b</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> up to the four-loop accuracy.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":null,"pages":null},"PeriodicalIF":14.5000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High precision tests of QCD without scale or scheme ambiguities\",\"authors\":\"Leonardo Di Giustino ,&nbsp;Stanley J. Brodsky ,&nbsp;Philip G. Ratcliffe ,&nbsp;Xing-Gang Wu ,&nbsp;Sheng-Quan Wang\",\"doi\":\"10.1016/j.ppnp.2023.104092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A key issue in making precise predictions in QCD is the uncertainty in setting the renormalization scale </span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> and thus determining the correct values of the QCD running coupling <span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> at each order in the perturbative expansion of a QCD observable. It has often been conventional to simply set the renormalization scale to the typical scale of the process <span><math><mi>Q</mi></math></span> and vary it in the range <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mi>Q</mi><mo>/</mo><mn>2</mn><mo>,</mo><mn>2</mn><mi>Q</mi><mo>]</mo></mrow></mrow></math></span> in order to estimate the theoretical error. This is the practice of Conventional Scale Setting (CSS). The resulting CSS prediction will however depend on the theorist’s choice of renormalization scheme and the resulting pQCD series will diverge factorially. It will also disagree with renormalization scale setting used in QED and electroweak theory thus precluding grand unification. A solution to the renormalization scale-setting problem is offered by the Principle of Maximum Conformality (PMC), which provides a systematic way to eliminate the renormalization scale-and-scheme dependence in perturbative calculations. The PMC method has rigorous theoretical foundations, it satisfies Renormalization Group Invariance (RGI) and preserves all self-consistency conditions derived from the renormalization group. The PMC cancels the renormalon growth, reduces to the Gell-Mann–Low scheme in the <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>→</mo><mn>0</mn></mrow></math></span> Abelian limit and leads to scale- and scheme-invariant results. The PMC has now been successfully applied to many high-energy processes. In this article we summarize recent developments and results in solving the renormalization scale and scheme ambiguities in perturbative QCD. In particular, we present a recently developed method the PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> and its applications, comparing the results with CSS. The method preserves the property of renormalizable SU(N)/U(1) gauge theories defined as <em>Intrinsic Conformality</em> (<em>iCF</em>).</p><p>This property underlies the scale invariance of physical observables and leads to a remarkably efficient method to solve the conventional renormalization scale ambiguity at every order in pQCD.</p><p>This new method reflects the underlying conformal properties displayed by pQCD at NNLO, eliminates the scheme dependence of pQCD predictions and is consistent with the general properties of the PMC. A new method to identify conformal and <span><math><mi>β</mi></math></span>-terms, which can be applied either to numerical or to theoretical calculations is also shown. We present results for the thrust and <span><math><mi>C</mi></math></span>-parameter distributions in <span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span> annihilation showing errors and comparison with the CSS. We also show results for a recent innovative comparison between the CSS and the PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> applied to the thrust distribution investigating both the QCD conformal window and the QED <span><math><mrow><msub><mrow><mi>N</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>→</mo><mn>0</mn></mrow></math></span> limit. In order to determine the thrust distribution along the entire renormalization group flow from the highest energies to zero energy, we consider the number of flavors near the upper boundary of the conformal window. In this flavor-number regime the theory develops a perturbative infrared interacting fixed point. These results show that PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> leads to higher precision and introduces new interesting features in the PMC. In fact, this method preserves with continuity the position of the peak, showing perfect agreement with the experimental data already at NNLO.</p><p>We also show a detailed comparison of the PMC<span><math><msub><mrow></mrow><mrow><mi>∞</mi></mrow></msub></math></span> with the other PMC approaches: the multi-scale-setting approach (PMCm) and the single-scale-setting approach (PMCs) by comparing their predictions for three important fully integrated quantities <span><math><msub><mrow><mi>R</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>τ</mi></mrow></msub></math></span> and <span><math><mrow><mi>Γ</mi><mrow><mo>(</mo><mi>H</mi><mo>→</mo><mi>b</mi><mover><mrow><mi>b</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> up to the four-loop accuracy.</p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014664102300073X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014664102300073X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在QCD中进行精确预测的一个关键问题是在确定重正化尺度μr时的不确定性,从而确定QCD运行耦合αs(μr)在QCD观测值的微扰展开中每一阶的正确值。通常惯例是简单地将重整化尺度设置为过程Q的典型尺度,并在μr∈[Q/2,2Q]范围内变化,以估计理论误差。这就是CSS (Conventional Scale Setting)的做法。然而,最终的CSS预测将取决于理论家对重整化方案的选择,并且最终的pQCD系列将会因式发散。它也将与QED和电弱理论中使用的重整化尺度设置不一致,从而排除了大统一。利用最大一致性原理(Principle of Maximum conformal, PMC)提出了一种解决重归一化尺度设置问题的方法,为消除微扰计算中重归一化尺度与方案依赖提供了一种系统的方法。PMC方法具有严密的理论基础,它满足重整化群不变性(RGI),并保持重整化群导出的所有自洽条件。PMC消除了重正态增长,在Nc→0阿贝尔极限下简化为Gell-Mann-Low格式,并得到尺度不变和格式不变的结果。PMC现已成功地应用于许多高能过程。本文综述了近年来在解决微扰QCD中重正化尺度和格式歧义方面的研究进展和成果。特别地,我们介绍了最近开发的PMC∞方法及其应用,并将结果与CSS进行了比较。该方法保留了可重整的SU(N)/U(1)规范理论定义为内在共形(Intrinsic conformal, iCF)的性质。这一特性是物理观测值尺度不变性的基础,并导致了一种非常有效的方法来解决pQCD中每阶常规重整化尺度模糊问题。该方法反映了pQCD在NNLO中显示的基本共形性质,消除了pQCD预测的方案依赖性,与PMC的一般性质一致。本文还提出了一种新的确定保形项和β项的方法,该方法既可用于数值计算,也可用于理论计算。我们给出了e+e−湮灭的推力和c参数分布的结果,显示了误差,并与CSS进行了比较。我们还展示了最近将CSS和PMC∞应用于推力分布的创新比较的结果,该比较研究了QCD共形窗口和QED Nc→0极限。为了确定从最高能量到零能量的整个重整化群流的推力分布,我们考虑了保形窗口上界附近的味道数。在这种风味-数制度下,理论发展了一个摄动红外相互作用不动点。这些结果表明,PMC∞可以提高精度,并在PMC中引入新的有趣特征。事实上,该方法保持了峰值位置的连续性,与NNLO已有的实验数据完全一致。我们还展示了PMC∞与其他PMC方法的详细比较:多尺度设置方法(PMCm)和单尺度设置方法(PMCs),通过比较它们对三个重要的完全积分量Re+e−,Rτ和Γ(H→bb)的预测,达到四环精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High precision tests of QCD without scale or scheme ambiguities

A key issue in making precise predictions in QCD is the uncertainty in setting the renormalization scale μr and thus determining the correct values of the QCD running coupling αs(μr) at each order in the perturbative expansion of a QCD observable. It has often been conventional to simply set the renormalization scale to the typical scale of the process Q and vary it in the range μr[Q/2,2Q] in order to estimate the theoretical error. This is the practice of Conventional Scale Setting (CSS). The resulting CSS prediction will however depend on the theorist’s choice of renormalization scheme and the resulting pQCD series will diverge factorially. It will also disagree with renormalization scale setting used in QED and electroweak theory thus precluding grand unification. A solution to the renormalization scale-setting problem is offered by the Principle of Maximum Conformality (PMC), which provides a systematic way to eliminate the renormalization scale-and-scheme dependence in perturbative calculations. The PMC method has rigorous theoretical foundations, it satisfies Renormalization Group Invariance (RGI) and preserves all self-consistency conditions derived from the renormalization group. The PMC cancels the renormalon growth, reduces to the Gell-Mann–Low scheme in the Nc0 Abelian limit and leads to scale- and scheme-invariant results. The PMC has now been successfully applied to many high-energy processes. In this article we summarize recent developments and results in solving the renormalization scale and scheme ambiguities in perturbative QCD. In particular, we present a recently developed method the PMC and its applications, comparing the results with CSS. The method preserves the property of renormalizable SU(N)/U(1) gauge theories defined as Intrinsic Conformality (iCF).

This property underlies the scale invariance of physical observables and leads to a remarkably efficient method to solve the conventional renormalization scale ambiguity at every order in pQCD.

This new method reflects the underlying conformal properties displayed by pQCD at NNLO, eliminates the scheme dependence of pQCD predictions and is consistent with the general properties of the PMC. A new method to identify conformal and β-terms, which can be applied either to numerical or to theoretical calculations is also shown. We present results for the thrust and C-parameter distributions in e+e annihilation showing errors and comparison with the CSS. We also show results for a recent innovative comparison between the CSS and the PMC applied to the thrust distribution investigating both the QCD conformal window and the QED Nc0 limit. In order to determine the thrust distribution along the entire renormalization group flow from the highest energies to zero energy, we consider the number of flavors near the upper boundary of the conformal window. In this flavor-number regime the theory develops a perturbative infrared interacting fixed point. These results show that PMC leads to higher precision and introduces new interesting features in the PMC. In fact, this method preserves with continuity the position of the peak, showing perfect agreement with the experimental data already at NNLO.

We also show a detailed comparison of the PMC with the other PMC approaches: the multi-scale-setting approach (PMCm) and the single-scale-setting approach (PMCs) by comparing their predictions for three important fully integrated quantities Re+e, Rτ and Γ(Hbb̄) up to the four-loop accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Particle and Nuclear Physics
Progress in Particle and Nuclear Physics 物理-物理:核物理
CiteScore
24.50
自引率
3.10%
发文量
41
审稿时长
72 days
期刊介绍: Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信