Adriana Daca, Dominique Tremblay, Krzysztof Skonieczny
{"title":"减重状态下车轮性能预测标度关系的扩展与实验评价","authors":"Adriana Daca, Dominique Tremblay, Krzysztof Skonieczny","doi":"10.1007/s12217-023-10087-4","DOIUrl":null,"url":null,"abstract":"<div><p>Traversing granular regolith, especially in reduced gravity environments, remains a potential challenge for wheeled rovers. Mitigating hazards for planetary exploration rovers requires testing in representative environments, but direct Earth-based testing fails to account for the effect of reduced gravity on the soil itself. Granular scaling laws (GSL) have been proposed in the literature to predict performance of a larger wheel based on tests with a smaller wheel, or to predict performance in one gravity level based on tests in another gravity level. However, this is the first work to experimentally validate GSL in reduced gravity. Here, an expanded version of existing GSL was evaluated experimentally by measuring performance of a single wheel driving through cohesionless lunar soil simulant GRC-1 aboard parabolic flights that reproduce the effects of lunar gravity, and comparing those results to scaled tests performed on the ground. This scaled-wheel testing achieved less than 10% prediction error on three measured output metrics: drawbar pull (i.e. net traction), sinkage, and power draw. Predictions also erred on the conservative side. Subsurface soil imaging revealed similar soil behavior between scaled tests. GSL thus offers an accurate and conservative method for predicting wheel performance in reduced gravity based on 1-g experiments, at least in cohesionless soil.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expansion and Experimental Evaluation of Scaling Relations for the Prediction of Wheel Performance in Reduced Gravity\",\"authors\":\"Adriana Daca, Dominique Tremblay, Krzysztof Skonieczny\",\"doi\":\"10.1007/s12217-023-10087-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traversing granular regolith, especially in reduced gravity environments, remains a potential challenge for wheeled rovers. Mitigating hazards for planetary exploration rovers requires testing in representative environments, but direct Earth-based testing fails to account for the effect of reduced gravity on the soil itself. Granular scaling laws (GSL) have been proposed in the literature to predict performance of a larger wheel based on tests with a smaller wheel, or to predict performance in one gravity level based on tests in another gravity level. However, this is the first work to experimentally validate GSL in reduced gravity. Here, an expanded version of existing GSL was evaluated experimentally by measuring performance of a single wheel driving through cohesionless lunar soil simulant GRC-1 aboard parabolic flights that reproduce the effects of lunar gravity, and comparing those results to scaled tests performed on the ground. This scaled-wheel testing achieved less than 10% prediction error on three measured output metrics: drawbar pull (i.e. net traction), sinkage, and power draw. Predictions also erred on the conservative side. Subsurface soil imaging revealed similar soil behavior between scaled tests. GSL thus offers an accurate and conservative method for predicting wheel performance in reduced gravity based on 1-g experiments, at least in cohesionless soil.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10087-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10087-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Expansion and Experimental Evaluation of Scaling Relations for the Prediction of Wheel Performance in Reduced Gravity
Traversing granular regolith, especially in reduced gravity environments, remains a potential challenge for wheeled rovers. Mitigating hazards for planetary exploration rovers requires testing in representative environments, but direct Earth-based testing fails to account for the effect of reduced gravity on the soil itself. Granular scaling laws (GSL) have been proposed in the literature to predict performance of a larger wheel based on tests with a smaller wheel, or to predict performance in one gravity level based on tests in another gravity level. However, this is the first work to experimentally validate GSL in reduced gravity. Here, an expanded version of existing GSL was evaluated experimentally by measuring performance of a single wheel driving through cohesionless lunar soil simulant GRC-1 aboard parabolic flights that reproduce the effects of lunar gravity, and comparing those results to scaled tests performed on the ground. This scaled-wheel testing achieved less than 10% prediction error on three measured output metrics: drawbar pull (i.e. net traction), sinkage, and power draw. Predictions also erred on the conservative side. Subsurface soil imaging revealed similar soil behavior between scaled tests. GSL thus offers an accurate and conservative method for predicting wheel performance in reduced gravity based on 1-g experiments, at least in cohesionless soil.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.