{"title":"用于头颈癌放疗计划的基于人工智能的自动轮廓解决方案","authors":"Virginia Marin Anaya","doi":"10.1016/j.ipemt.2023.100018","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Manual contouring is time-consuming and subjective. Thus, auto-segmentation methods, which can be deployed in the existing workflow, are needed. The objective of this study was to assess the feasibility of Limbus AI and AI Rad Companion auto-contours for head and neck treatment planning.</p></div><div><h3>Methods</h3><p>Head and neck patients treated with RapidArc were selected retrospectively. The manual contours on the planning CT were used as reference. Geometric analysis of the auto-contours was performed using several evaluation metrics such as the Dice Similarity Coefficient (DSC) and the Mean Distance to Conformity (MDC). Dosimetric analysis was performed by recalculating the original plan on the auto-contours and comparing Dose Volume Histogram (DVH) metrics to the original plan.</p></div><div><h3>Results and discussion</h3><p>Both AI tools tend to underestimate the volumes of brainstem and cord. For brainstem and parotids, median DSC values were ≥ 0.8. For all auto-contours, median MDC values were ∼ 3–6 mm. Median differences were found of up to ±7 % in DVH points on the auto-contours relative to the planning CT contours, but these were not statistically-significant.</p></div><div><h3>Conclusion</h3><p>The auto-contours could be used as a starting point to assist the clinician with the manual contouring of structures on the planning and re-scanning planning CT.</p></div>","PeriodicalId":73507,"journal":{"name":"IPEM-translation","volume":"6 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667258823000031/pdfft?md5=9b7269c600230bd5b8b66a2cab079e41&pid=1-s2.0-S2667258823000031-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence based auto-contouring solutions for use in radiotherapy treatment planning of head and neck cancer\",\"authors\":\"Virginia Marin Anaya\",\"doi\":\"10.1016/j.ipemt.2023.100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Manual contouring is time-consuming and subjective. Thus, auto-segmentation methods, which can be deployed in the existing workflow, are needed. The objective of this study was to assess the feasibility of Limbus AI and AI Rad Companion auto-contours for head and neck treatment planning.</p></div><div><h3>Methods</h3><p>Head and neck patients treated with RapidArc were selected retrospectively. The manual contours on the planning CT were used as reference. Geometric analysis of the auto-contours was performed using several evaluation metrics such as the Dice Similarity Coefficient (DSC) and the Mean Distance to Conformity (MDC). Dosimetric analysis was performed by recalculating the original plan on the auto-contours and comparing Dose Volume Histogram (DVH) metrics to the original plan.</p></div><div><h3>Results and discussion</h3><p>Both AI tools tend to underestimate the volumes of brainstem and cord. For brainstem and parotids, median DSC values were ≥ 0.8. For all auto-contours, median MDC values were ∼ 3–6 mm. Median differences were found of up to ±7 % in DVH points on the auto-contours relative to the planning CT contours, but these were not statistically-significant.</p></div><div><h3>Conclusion</h3><p>The auto-contours could be used as a starting point to assist the clinician with the manual contouring of structures on the planning and re-scanning planning CT.</p></div>\",\"PeriodicalId\":73507,\"journal\":{\"name\":\"IPEM-translation\",\"volume\":\"6 \",\"pages\":\"Article 100018\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667258823000031/pdfft?md5=9b7269c600230bd5b8b66a2cab079e41&pid=1-s2.0-S2667258823000031-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPEM-translation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667258823000031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPEM-translation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667258823000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
手工轮廓是费时和主观的。因此,需要在现有工作流中部署的自动分割方法。本研究的目的是评估Limbus AI和AI Rad Companion自动轮廓在头颈部治疗计划中的可行性。方法回顾性分析使用RapidArc治疗的头颈部患者。参考规划CT上的手工等高线。使用骰子相似系数(DSC)和平均一致性距离(MDC)等几个评估指标对自动轮廓进行几何分析。通过在自动轮廓上重新计算原计划并将剂量体积直方图(DVH)指标与原计划进行比较,进行剂量学分析。结果和讨论两种人工智能工具都倾向于低估脑干和脊髓的体积。脑干和腮腺的DSC中位数≥0.8。对于所有自动轮廓,中位MDC值为~ 3-6 mm。相对于规划CT轮廓,自动轮廓上的DVH点的中位数差异高达±7%,但这些差异没有统计学意义。结论自动轮廓可以作为辅助临床医生在规划和重扫描规划CT上进行人工结构轮廓的起点。
Artificial intelligence based auto-contouring solutions for use in radiotherapy treatment planning of head and neck cancer
Background
Manual contouring is time-consuming and subjective. Thus, auto-segmentation methods, which can be deployed in the existing workflow, are needed. The objective of this study was to assess the feasibility of Limbus AI and AI Rad Companion auto-contours for head and neck treatment planning.
Methods
Head and neck patients treated with RapidArc were selected retrospectively. The manual contours on the planning CT were used as reference. Geometric analysis of the auto-contours was performed using several evaluation metrics such as the Dice Similarity Coefficient (DSC) and the Mean Distance to Conformity (MDC). Dosimetric analysis was performed by recalculating the original plan on the auto-contours and comparing Dose Volume Histogram (DVH) metrics to the original plan.
Results and discussion
Both AI tools tend to underestimate the volumes of brainstem and cord. For brainstem and parotids, median DSC values were ≥ 0.8. For all auto-contours, median MDC values were ∼ 3–6 mm. Median differences were found of up to ±7 % in DVH points on the auto-contours relative to the planning CT contours, but these were not statistically-significant.
Conclusion
The auto-contours could be used as a starting point to assist the clinician with the manual contouring of structures on the planning and re-scanning planning CT.