{"title":"膜相控阵天线的静电吸附重力卸载方法","authors":"Wang Zhong, Jichuan Xiong, Yiqun Zhang","doi":"10.1007/s12217-023-10083-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a gravity unloading method based on electrostatic adsorption is proposed to address the issue of large flexibility in membrane phased-array antennas. Through considering the gravity distribution of the antenna and the edge effect of the electrode system, the unloading efficiency and system robustness are improved using a grouping strategy and size optimization. The deformation equilibrium equation under both gravity and electrostatic fields is established, and the voltage optimization model of the electrode system is also formulated with the goal of complete compensation for gravity deformation. The advantages and effectiveness of the proposed method are demonstrated by comparing simulation and unloading experiment results with those obtained using the suspension method. Both results indicate that the electrostatic unloading method can achieve the same unloading effect as the suspension method. Moreover, without introducing in-plane deformations during unloading, this method enhances accuracy and provides valuable insights for optimizing the assembly and testing processes.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravity Unloading Method of Membrane Phased-array Antennas Using Electrostatic Adsorption\",\"authors\":\"Wang Zhong, Jichuan Xiong, Yiqun Zhang\",\"doi\":\"10.1007/s12217-023-10083-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a gravity unloading method based on electrostatic adsorption is proposed to address the issue of large flexibility in membrane phased-array antennas. Through considering the gravity distribution of the antenna and the edge effect of the electrode system, the unloading efficiency and system robustness are improved using a grouping strategy and size optimization. The deformation equilibrium equation under both gravity and electrostatic fields is established, and the voltage optimization model of the electrode system is also formulated with the goal of complete compensation for gravity deformation. The advantages and effectiveness of the proposed method are demonstrated by comparing simulation and unloading experiment results with those obtained using the suspension method. Both results indicate that the electrostatic unloading method can achieve the same unloading effect as the suspension method. Moreover, without introducing in-plane deformations during unloading, this method enhances accuracy and provides valuable insights for optimizing the assembly and testing processes.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10083-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10083-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Gravity Unloading Method of Membrane Phased-array Antennas Using Electrostatic Adsorption
In this study, a gravity unloading method based on electrostatic adsorption is proposed to address the issue of large flexibility in membrane phased-array antennas. Through considering the gravity distribution of the antenna and the edge effect of the electrode system, the unloading efficiency and system robustness are improved using a grouping strategy and size optimization. The deformation equilibrium equation under both gravity and electrostatic fields is established, and the voltage optimization model of the electrode system is also formulated with the goal of complete compensation for gravity deformation. The advantages and effectiveness of the proposed method are demonstrated by comparing simulation and unloading experiment results with those obtained using the suspension method. Both results indicate that the electrostatic unloading method can achieve the same unloading effect as the suspension method. Moreover, without introducing in-plane deformations during unloading, this method enhances accuracy and provides valuable insights for optimizing the assembly and testing processes.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology