具有局部列表大小的边着色图

IF 1.2 1区 数学 Q1 MATHEMATICS
Marthe Bonamy , Michelle Delcourt , Richard Lang , Luke Postle
{"title":"具有局部列表大小的边着色图","authors":"Marthe Bonamy ,&nbsp;Michelle Delcourt ,&nbsp;Richard Lang ,&nbsp;Luke Postle","doi":"10.1016/j.jctb.2023.10.010","DOIUrl":null,"url":null,"abstract":"<div><p>The famous List Colouring Conjecture from the 1970s states that for every graph <em>G</em> the chromatic index of <em>G</em><span> is equal to its list chromatic index. In 1996 in a seminal paper, Kahn proved that the List Colouring Conjecture holds asymptotically. Our main result is a local generalization of Kahn's theorem. More precisely, we show that, for a graph </span><em>G</em><span> with sufficiently large maximum degree Δ and minimum degree </span><span><math><mi>δ</mi><mo>≥</mo><msup><mrow><mi>ln</mi></mrow><mrow><mn>25</mn></mrow></msup><mo>⁡</mo><mi>Δ</mi></math></span>, the following holds: for every assignment <em>L</em> of lists of colours to the edges of <em>G</em>, such that <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>⋅</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>}</mo></mrow></math></span> for each edge <span><math><mi>e</mi><mo>=</mo><mi>u</mi><mi>v</mi></math></span>, there is an <em>L</em>-edge-colouring of <em>G</em>. Furthermore, Kahn showed that the List Colouring Conjecture holds asymptotically for linear, <em>k</em><span>-uniform hypergraphs, and recently Molloy generalized Kahn's original result to correspondence colouring as well as its hypergraph generalization. We prove local versions of all of these generalizations by showing a weighted version that simultaneously implies all of our results.</span></p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"165 ","pages":"Pages 68-96"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Edge-colouring graphs with local list sizes\",\"authors\":\"Marthe Bonamy ,&nbsp;Michelle Delcourt ,&nbsp;Richard Lang ,&nbsp;Luke Postle\",\"doi\":\"10.1016/j.jctb.2023.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The famous List Colouring Conjecture from the 1970s states that for every graph <em>G</em> the chromatic index of <em>G</em><span> is equal to its list chromatic index. In 1996 in a seminal paper, Kahn proved that the List Colouring Conjecture holds asymptotically. Our main result is a local generalization of Kahn's theorem. More precisely, we show that, for a graph </span><em>G</em><span> with sufficiently large maximum degree Δ and minimum degree </span><span><math><mi>δ</mi><mo>≥</mo><msup><mrow><mi>ln</mi></mrow><mrow><mn>25</mn></mrow></msup><mo>⁡</mo><mi>Δ</mi></math></span>, the following holds: for every assignment <em>L</em> of lists of colours to the edges of <em>G</em>, such that <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>⋅</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>}</mo></mrow></math></span> for each edge <span><math><mi>e</mi><mo>=</mo><mi>u</mi><mi>v</mi></math></span>, there is an <em>L</em>-edge-colouring of <em>G</em>. Furthermore, Kahn showed that the List Colouring Conjecture holds asymptotically for linear, <em>k</em><span>-uniform hypergraphs, and recently Molloy generalized Kahn's original result to correspondence colouring as well as its hypergraph generalization. We prove local versions of all of these generalizations by showing a weighted version that simultaneously implies all of our results.</span></p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"165 \",\"pages\":\"Pages 68-96\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562300093X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562300093X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

20世纪70年代著名的列表着色猜想指出,对于每一个图G, G的色指数等于它的列表色指数。在1996年的一篇开创性论文中,Kahn证明了列表着色猜想是渐近成立的。我们的主要结果是Kahn定理的一个局部推广。更准确地说,我们证明了对于一个最大度Δ和最小度Δ≥ln25 (Δ)足够大的图G,有如下成立:对于G的每条边的颜色列表的每一个赋值L,使得|L(e)|≥(1+o(1))·max ({deg (u),deg (v)}),对于每条边e=uv,存在G的L边着色。此外,Kahn证明了列表着色猜想对于线性k-一致超图渐近成立,最近Molloy将Kahn的原始结果推广到对应着色及其超图推广。我们通过展示一个同时包含我们所有结果的加权版本来证明所有这些推广的局部版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-colouring graphs with local list sizes

The famous List Colouring Conjecture from the 1970s states that for every graph G the chromatic index of G is equal to its list chromatic index. In 1996 in a seminal paper, Kahn proved that the List Colouring Conjecture holds asymptotically. Our main result is a local generalization of Kahn's theorem. More precisely, we show that, for a graph G with sufficiently large maximum degree Δ and minimum degree δln25Δ, the following holds: for every assignment L of lists of colours to the edges of G, such that |L(e)|(1+o(1))max{deg(u),deg(v)} for each edge e=uv, there is an L-edge-colouring of G. Furthermore, Kahn showed that the List Colouring Conjecture holds asymptotically for linear, k-uniform hypergraphs, and recently Molloy generalized Kahn's original result to correspondence colouring as well as its hypergraph generalization. We prove local versions of all of these generalizations by showing a weighted version that simultaneously implies all of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信