Lin Shaodan , Yao Yue , Li Jiayi , Li Xiaobin , Ma Jie , Weng Haiyong , Cheng Zuxin , Ye Dapeng
{"title":"基于无人机成像和深度学习技术在水稻稻瘟病抗性评估中的应用","authors":"Lin Shaodan , Yao Yue , Li Jiayi , Li Xiaobin , Ma Jie , Weng Haiyong , Cheng Zuxin , Ye Dapeng","doi":"10.1016/j.rsci.2023.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Rice blast is regarded as one of the major diseases of rice. Screening rice genotypes with high resistance to rice blast is a key strategy for ensuring global food security. Unmanned aerial vehicles (UAV)-based imaging, coupled with deep learning, can acquire high-throughput imagery related to rice blast infection. In this study, we developed a segmented detection model (called RiceblastSegMask) for rice blast detection and resistance evaluation. The feasibility of different backbones and target detection models was further investigated. RiceblastSegMask is a two-stage instance segmentation model, comprising an image-denoising backbone network, a feature pyramid, a trinomial tree fine-grained feature extraction combination network, and an image pixel codec module. The results showed that the model combining the image-denoising and fine-grained feature extraction based on the Swin Transformer and the feature pixel matching feature labels with the trinomial tree recursive algorithm performed the best. The overall accuracy for instance segmentation of RiceblastSegMask reached 97.56%, and it demonstrated a satisfactory accuracy of 90.29% for grading unique resistance to rice blast. These results indicated that low-altitude remote sensing using UAV, in conjunction with the proposed RiceblastSegMask model, can efficiently calculate the extent of rice blast infection, offering a new phenotypic tool for evaluating rice blast resistance on a field scale in rice breeding programs.</p></div>","PeriodicalId":56069,"journal":{"name":"Rice Science","volume":"30 6","pages":"Pages 652-660"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1672630823000896/pdfft?md5=73f0978cd379874e860c3f749056918e&pid=1-s2.0-S1672630823000896-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance\",\"authors\":\"Lin Shaodan , Yao Yue , Li Jiayi , Li Xiaobin , Ma Jie , Weng Haiyong , Cheng Zuxin , Ye Dapeng\",\"doi\":\"10.1016/j.rsci.2023.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rice blast is regarded as one of the major diseases of rice. Screening rice genotypes with high resistance to rice blast is a key strategy for ensuring global food security. Unmanned aerial vehicles (UAV)-based imaging, coupled with deep learning, can acquire high-throughput imagery related to rice blast infection. In this study, we developed a segmented detection model (called RiceblastSegMask) for rice blast detection and resistance evaluation. The feasibility of different backbones and target detection models was further investigated. RiceblastSegMask is a two-stage instance segmentation model, comprising an image-denoising backbone network, a feature pyramid, a trinomial tree fine-grained feature extraction combination network, and an image pixel codec module. The results showed that the model combining the image-denoising and fine-grained feature extraction based on the Swin Transformer and the feature pixel matching feature labels with the trinomial tree recursive algorithm performed the best. The overall accuracy for instance segmentation of RiceblastSegMask reached 97.56%, and it demonstrated a satisfactory accuracy of 90.29% for grading unique resistance to rice blast. These results indicated that low-altitude remote sensing using UAV, in conjunction with the proposed RiceblastSegMask model, can efficiently calculate the extent of rice blast infection, offering a new phenotypic tool for evaluating rice blast resistance on a field scale in rice breeding programs.</p></div>\",\"PeriodicalId\":56069,\"journal\":{\"name\":\"Rice Science\",\"volume\":\"30 6\",\"pages\":\"Pages 652-660\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1672630823000896/pdfft?md5=73f0978cd379874e860c3f749056918e&pid=1-s2.0-S1672630823000896-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1672630823000896\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672630823000896","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance
Rice blast is regarded as one of the major diseases of rice. Screening rice genotypes with high resistance to rice blast is a key strategy for ensuring global food security. Unmanned aerial vehicles (UAV)-based imaging, coupled with deep learning, can acquire high-throughput imagery related to rice blast infection. In this study, we developed a segmented detection model (called RiceblastSegMask) for rice blast detection and resistance evaluation. The feasibility of different backbones and target detection models was further investigated. RiceblastSegMask is a two-stage instance segmentation model, comprising an image-denoising backbone network, a feature pyramid, a trinomial tree fine-grained feature extraction combination network, and an image pixel codec module. The results showed that the model combining the image-denoising and fine-grained feature extraction based on the Swin Transformer and the feature pixel matching feature labels with the trinomial tree recursive algorithm performed the best. The overall accuracy for instance segmentation of RiceblastSegMask reached 97.56%, and it demonstrated a satisfactory accuracy of 90.29% for grading unique resistance to rice blast. These results indicated that low-altitude remote sensing using UAV, in conjunction with the proposed RiceblastSegMask model, can efficiently calculate the extent of rice blast infection, offering a new phenotypic tool for evaluating rice blast resistance on a field scale in rice breeding programs.
Rice ScienceAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
8.90
自引率
6.20%
发文量
55
审稿时长
40 weeks
期刊介绍:
Rice Science is an international research journal sponsored by China National Rice Research Institute. It publishes original research papers, review articles, as well as short communications on all aspects of rice sciences in English language. Some of the topics that may be included in each issue are: breeding and genetics, biotechnology, germplasm resources, crop management, pest management, physiology, soil and fertilizer management, ecology, cereal chemistry and post-harvest processing.