Apostolos Ziakopoulos , Christina Telidou , Apostolos Anagnostopoulos , Fotini Kehagia , George Yannis
{"title":"对自动驾驶汽车接受度的看法:来自自组织地图和随机森林的信息挖掘","authors":"Apostolos Ziakopoulos , Christina Telidou , Apostolos Anagnostopoulos , Fotini Kehagia , George Yannis","doi":"10.1016/j.iatssr.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>The present research investigates a range of factors affecting autonomous vehicle (AV) acceptance of Greek citizens through a questionnaire distributed to 563 respondents. Following the extraction of descriptive statistics, self-organizing maps (SOMs) were employed to meaningfully categorize and aggregate questions pertaining to four main pillars of the questionnaire, which are conceptually relevant namely: (i) how several factors affect general car choices of respondents, (ii) what the respondents perceived that AVs would offer, (iii) how much they agreed with stated expected technology and efficiency-oriented AV traits and (iv) how they believe several factors affect driving behavior overall. A Random Forest (RF) algorithm was applied to classify the AV acceptance decisions of a training subset of the respondents, and was subsequently assessed on a test subset. SOM results indicate that participants can be meaningfully separated into two SOM cluster groups for pillars (i), (ii) and (iv), while pillar (iii) yielded separations into three SOM cluster groups. RF feature importance calculation indicated a number of affecting variables; the five most contributing ones are: distance covering capabilities of AVs was a major factor affecting acceptance decisions, followed (by a wide margin) by responder opinions on whether the principles and conscience of drivers can be replaced by an AI navigator without reducing safety levels, while the algorithm itself conducted successful classification to about 80% of test cases. Present results can be used to anticipate AV penetration levels based on sample characteristics and to improve AV traits in cases where higher AV penetration is sought.</p></div>","PeriodicalId":47059,"journal":{"name":"IATSS Research","volume":"47 4","pages":"Pages 499-513"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S038611122300047X/pdfft?md5=da47557f29b5fae70c820885b02bc03f&pid=1-s2.0-S038611122300047X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Perceptions towards autonomous vehicle acceptance: Information mining from Self-Organizing Maps and Random Forests\",\"authors\":\"Apostolos Ziakopoulos , Christina Telidou , Apostolos Anagnostopoulos , Fotini Kehagia , George Yannis\",\"doi\":\"10.1016/j.iatssr.2023.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present research investigates a range of factors affecting autonomous vehicle (AV) acceptance of Greek citizens through a questionnaire distributed to 563 respondents. Following the extraction of descriptive statistics, self-organizing maps (SOMs) were employed to meaningfully categorize and aggregate questions pertaining to four main pillars of the questionnaire, which are conceptually relevant namely: (i) how several factors affect general car choices of respondents, (ii) what the respondents perceived that AVs would offer, (iii) how much they agreed with stated expected technology and efficiency-oriented AV traits and (iv) how they believe several factors affect driving behavior overall. A Random Forest (RF) algorithm was applied to classify the AV acceptance decisions of a training subset of the respondents, and was subsequently assessed on a test subset. SOM results indicate that participants can be meaningfully separated into two SOM cluster groups for pillars (i), (ii) and (iv), while pillar (iii) yielded separations into three SOM cluster groups. RF feature importance calculation indicated a number of affecting variables; the five most contributing ones are: distance covering capabilities of AVs was a major factor affecting acceptance decisions, followed (by a wide margin) by responder opinions on whether the principles and conscience of drivers can be replaced by an AI navigator without reducing safety levels, while the algorithm itself conducted successful classification to about 80% of test cases. Present results can be used to anticipate AV penetration levels based on sample characteristics and to improve AV traits in cases where higher AV penetration is sought.</p></div>\",\"PeriodicalId\":47059,\"journal\":{\"name\":\"IATSS Research\",\"volume\":\"47 4\",\"pages\":\"Pages 499-513\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S038611122300047X/pdfft?md5=da47557f29b5fae70c820885b02bc03f&pid=1-s2.0-S038611122300047X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IATSS Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S038611122300047X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IATSS Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S038611122300047X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Perceptions towards autonomous vehicle acceptance: Information mining from Self-Organizing Maps and Random Forests
The present research investigates a range of factors affecting autonomous vehicle (AV) acceptance of Greek citizens through a questionnaire distributed to 563 respondents. Following the extraction of descriptive statistics, self-organizing maps (SOMs) were employed to meaningfully categorize and aggregate questions pertaining to four main pillars of the questionnaire, which are conceptually relevant namely: (i) how several factors affect general car choices of respondents, (ii) what the respondents perceived that AVs would offer, (iii) how much they agreed with stated expected technology and efficiency-oriented AV traits and (iv) how they believe several factors affect driving behavior overall. A Random Forest (RF) algorithm was applied to classify the AV acceptance decisions of a training subset of the respondents, and was subsequently assessed on a test subset. SOM results indicate that participants can be meaningfully separated into two SOM cluster groups for pillars (i), (ii) and (iv), while pillar (iii) yielded separations into three SOM cluster groups. RF feature importance calculation indicated a number of affecting variables; the five most contributing ones are: distance covering capabilities of AVs was a major factor affecting acceptance decisions, followed (by a wide margin) by responder opinions on whether the principles and conscience of drivers can be replaced by an AI navigator without reducing safety levels, while the algorithm itself conducted successful classification to about 80% of test cases. Present results can be used to anticipate AV penetration levels based on sample characteristics and to improve AV traits in cases where higher AV penetration is sought.
期刊介绍:
First published in 1977 as an international journal sponsored by the International Association of Traffic and Safety Sciences, IATSS Research has contributed to the dissemination of interdisciplinary wisdom on ideal mobility, particularly in Asia. IATSS Research is an international refereed journal providing a platform for the exchange of scientific findings on transportation and safety across a wide range of academic fields, with particular emphasis on the links between scientific findings and practice in society and cultural contexts. IATSS Research welcomes submission of original research articles and reviews that satisfy the following conditions: 1.Relevant to transportation and safety, and the multiple impacts of transportation systems on security, human health, and the environment. 2.Contains important policy and practical implications based on scientific evidence in the applicable academic field. In addition to welcoming general submissions, IATSS Research occasionally plans and publishes special feature sections and special issues composed of invited articles addressing specific topics.