Yufeng Pan , Ping Lu , Lin Cheng , Zhenyu Li , Dongchao Liu , Jinbiao Zhao , Yuxuan Wang , Lujun Fu , Chaotan Sima , Deming Liu
{"title":"基于机械加工集成音叉的小型化高灵敏度光纤光声气体传感器","authors":"Yufeng Pan , Ping Lu , Lin Cheng , Zhenyu Li , Dongchao Liu , Jinbiao Zhao , Yuxuan Wang , Lujun Fu , Chaotan Sima , Deming Liu","doi":"10.1016/j.pacs.2023.100573","DOIUrl":null,"url":null,"abstract":"<div><p>A proof-of-concept gas sensor based on a miniaturized and integrated fiber-optic photoacoustic detection module was introduced and demonstrated for the purpose of developing a custom tuning-fork (TF)-enhanced photoacoustic gas sensor. Instead of piezoelectric quartz tuning fork (QTF) in conventional quartz-enhanced photoacoustic spectroscopy (QEPAS), a low-cost custom aluminum alloy TF fabricated by mechanical processing was employed as a photoacoustic transducer and the vibration of TF was measured by fiber-optic Fabry-Pérot (FP) interferometer (FPI). The mechanical processing-based TF design scheme greatly increases the flexibility of the TF design with respect to the complex and expensive manufacture process of custom QTFs, and thus it can be better exploited to detect gases with slow vibrational-translational (V-T) relaxation rates and combine with light sources with poor beam quality. The resonance frequency and the quality factor of the designed custom TF at atmospheric pressure were experimentally determined to be 7.3 kHz and 4733, respectively. Dual-prong differential measurement method was proposed to double the photoacoustic signal and suppress the external same-direction noise. After detailed optimizing and investigating for the operating parameters by measuring H<sub>2</sub>O, the feasibility of the developed sensor for gas detection was demonstrated with a H<sub>2</sub>O minimum detection limit (MDL) of 1.2 ppm, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.8 × 10<sup>−8</sup> cm<sup>−1</sup> W/Hz<sup>1/2</sup>, which are better than the QTF-based photoacoustic sensors. The proposed gas sensing approach combined the advantages of QEPAS and fiber-optic sensing, which can greatly expand the application domains of PAS-based gas sensors.</p></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"34 ","pages":"Article 100573"},"PeriodicalIF":7.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221359792300126X/pdfft?md5=d35df02e4855f5f1094a964c7418fa28&pid=1-s2.0-S221359792300126X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Miniaturized and highly-sensitive fiber-optic photoacoustic gas sensor based on an integrated tuning fork by mechanical processing with dual-prong differential measurement\",\"authors\":\"Yufeng Pan , Ping Lu , Lin Cheng , Zhenyu Li , Dongchao Liu , Jinbiao Zhao , Yuxuan Wang , Lujun Fu , Chaotan Sima , Deming Liu\",\"doi\":\"10.1016/j.pacs.2023.100573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A proof-of-concept gas sensor based on a miniaturized and integrated fiber-optic photoacoustic detection module was introduced and demonstrated for the purpose of developing a custom tuning-fork (TF)-enhanced photoacoustic gas sensor. Instead of piezoelectric quartz tuning fork (QTF) in conventional quartz-enhanced photoacoustic spectroscopy (QEPAS), a low-cost custom aluminum alloy TF fabricated by mechanical processing was employed as a photoacoustic transducer and the vibration of TF was measured by fiber-optic Fabry-Pérot (FP) interferometer (FPI). The mechanical processing-based TF design scheme greatly increases the flexibility of the TF design with respect to the complex and expensive manufacture process of custom QTFs, and thus it can be better exploited to detect gases with slow vibrational-translational (V-T) relaxation rates and combine with light sources with poor beam quality. The resonance frequency and the quality factor of the designed custom TF at atmospheric pressure were experimentally determined to be 7.3 kHz and 4733, respectively. Dual-prong differential measurement method was proposed to double the photoacoustic signal and suppress the external same-direction noise. After detailed optimizing and investigating for the operating parameters by measuring H<sub>2</sub>O, the feasibility of the developed sensor for gas detection was demonstrated with a H<sub>2</sub>O minimum detection limit (MDL) of 1.2 ppm, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.8 × 10<sup>−8</sup> cm<sup>−1</sup> W/Hz<sup>1/2</sup>, which are better than the QTF-based photoacoustic sensors. The proposed gas sensing approach combined the advantages of QEPAS and fiber-optic sensing, which can greatly expand the application domains of PAS-based gas sensors.</p></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"34 \",\"pages\":\"Article 100573\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221359792300126X/pdfft?md5=d35df02e4855f5f1094a964c7418fa28&pid=1-s2.0-S221359792300126X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221359792300126X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221359792300126X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Miniaturized and highly-sensitive fiber-optic photoacoustic gas sensor based on an integrated tuning fork by mechanical processing with dual-prong differential measurement
A proof-of-concept gas sensor based on a miniaturized and integrated fiber-optic photoacoustic detection module was introduced and demonstrated for the purpose of developing a custom tuning-fork (TF)-enhanced photoacoustic gas sensor. Instead of piezoelectric quartz tuning fork (QTF) in conventional quartz-enhanced photoacoustic spectroscopy (QEPAS), a low-cost custom aluminum alloy TF fabricated by mechanical processing was employed as a photoacoustic transducer and the vibration of TF was measured by fiber-optic Fabry-Pérot (FP) interferometer (FPI). The mechanical processing-based TF design scheme greatly increases the flexibility of the TF design with respect to the complex and expensive manufacture process of custom QTFs, and thus it can be better exploited to detect gases with slow vibrational-translational (V-T) relaxation rates and combine with light sources with poor beam quality. The resonance frequency and the quality factor of the designed custom TF at atmospheric pressure were experimentally determined to be 7.3 kHz and 4733, respectively. Dual-prong differential measurement method was proposed to double the photoacoustic signal and suppress the external same-direction noise. After detailed optimizing and investigating for the operating parameters by measuring H2O, the feasibility of the developed sensor for gas detection was demonstrated with a H2O minimum detection limit (MDL) of 1.2 ppm, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 3.8 × 10−8 cm−1 W/Hz1/2, which are better than the QTF-based photoacoustic sensors. The proposed gas sensing approach combined the advantages of QEPAS and fiber-optic sensing, which can greatly expand the application domains of PAS-based gas sensors.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.