{"title":"病毒介导的合胞体形成的数学建模:过去的成功和未来的方向。","authors":"Hana M Dobrovolny","doi":"10.1007/978-3-031-37936-9_17","DOIUrl":null,"url":null,"abstract":"<p><p>Many viruses have the ability to cause cells to fuse into large multi-nucleated cells, known as syncytia. While the existence of syncytia has long been known and its importance in helping spread viral infection within a host has been understood, few mathematical models have incorporated syncytia formation or examined its role in viral dynamics. This review examines mathematical models that have incorporated virus-mediated cell fusion and the insights they have provided on how syncytia can change the time course of an infection. While the modeling efforts are limited, they show promise in helping us understand the consequences of syncytia formation if future modeling efforts can be coupled with appropriate experimental efforts to help validate the models.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions.\",\"authors\":\"Hana M Dobrovolny\",\"doi\":\"10.1007/978-3-031-37936-9_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many viruses have the ability to cause cells to fuse into large multi-nucleated cells, known as syncytia. While the existence of syncytia has long been known and its importance in helping spread viral infection within a host has been understood, few mathematical models have incorporated syncytia formation or examined its role in viral dynamics. This review examines mathematical models that have incorporated virus-mediated cell fusion and the insights they have provided on how syncytia can change the time course of an infection. While the modeling efforts are limited, they show promise in helping us understand the consequences of syncytia formation if future modeling efforts can be coupled with appropriate experimental efforts to help validate the models.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-37936-9_17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-37936-9_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions.
Many viruses have the ability to cause cells to fuse into large multi-nucleated cells, known as syncytia. While the existence of syncytia has long been known and its importance in helping spread viral infection within a host has been understood, few mathematical models have incorporated syncytia formation or examined its role in viral dynamics. This review examines mathematical models that have incorporated virus-mediated cell fusion and the insights they have provided on how syncytia can change the time course of an infection. While the modeling efforts are limited, they show promise in helping us understand the consequences of syncytia formation if future modeling efforts can be coupled with appropriate experimental efforts to help validate the models.
期刊介绍:
Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.