无造影剂和定量表征局灶性肝脏病变的MR指纹图谱。

IF 5.6 Q1 ONCOLOGY
Shohei Fujita, Katsuhiro Sano, Gastao Cruz, Carlos Velasco, Hideo Kawasaki, Yuki Fukumura, Masami Yoneyama, Akiyoshi Suzuki, Kotaro Yamamoto, Yuichi Morita, Takashi Arai, Issei Fukunaga, Wataru Uchida, Koji Kamagata, Osamu Abe, Ryohei Kuwatsuru, Akio Saiura, Kenichi Ikejima, René Botnar, Claudia Prieto, Shigeki Aoki
{"title":"无造影剂和定量表征局灶性肝脏病变的MR指纹图谱。","authors":"Shohei Fujita, Katsuhiro Sano, Gastao Cruz, Carlos Velasco, Hideo Kawasaki, Yuki Fukumura, Masami Yoneyama, Akiyoshi Suzuki, Kotaro Yamamoto, Yuichi Morita, Takashi Arai, Issei Fukunaga, Wataru Uchida, Koji Kamagata, Osamu Abe, Ryohei Kuwatsuru, Akio Saiura, Kenichi Ikejima, René Botnar, Claudia Prieto, Shigeki Aoki","doi":"10.1148/rycan.230036","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To evaluate the feasibility of liver MR fingerprinting (MRF) for quantitative characterization and diagnosis of focal liver lesions. Materials and Methods This single-site, prospective study included 89 participants (mean age, 62 years ± 15 [SD]; 45 women, 44 men) with various focal liver lesions who underwent MRI between October 2021 and August 2022. The participants underwent routine clinical MRI, non-contrast-enhanced liver MRF, and reference quantitative MRI with a 1.5-T MRI scanner. The bias and repeatability of the MRF measurements were assessed using linear regression, Bland-Altman plots, and coefficients of variation. The diagnostic capability of MRF-derived T1, T2, T2*, proton density fat fraction (PDFF), and a combination of these metrics to distinguish benign from malignant lesions was analyzed according to the area under the receiver operating characteristic curve (AUC). Results Liver MRF measurements showed moderate to high agreement with reference measurements (intraclass correlation = 0.94, 0.77, 0.45, and 0.61 for T1, T2, T2*, and PDFF, respectively), with underestimation of T2 values (mean bias in lesion = -0.5%, -29%, 5.8%, and -8.2% for T1, T2, T2*, and PDFF, respectively). The median coefficients of variation for repeatability of T1, T2, and T2* values were 2.5% (IQR, 3.6%), 3.1% (IQR, 5.6%), and 6.6% (IQR, 13.9%), respectively. After considering multicollinearity, a combination of MRF measurements showed a high diagnostic performance in differentiating benign from malignant lesions (AUC = 0.92 [95% CI: 0.86, 0.98]). Conclusion Liver MRF enabled the quantitative characterization of various focal liver lesions in a single breath-hold acquisition. <b>Keywords:</b> MR Imaging, Abdomen/GI, Liver, Imaging Sequences, Technical Aspects, Tissue Characterization, Technology Assessment, Diagnosis, Liver Lesions, MR Fingerprinting, Quantitative Characterization <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698593/pdf/","citationCount":"0","resultStr":"{\"title\":\"MR Fingerprinting for Contrast Agent-free and Quantitative Characterization of Focal Liver Lesions.\",\"authors\":\"Shohei Fujita, Katsuhiro Sano, Gastao Cruz, Carlos Velasco, Hideo Kawasaki, Yuki Fukumura, Masami Yoneyama, Akiyoshi Suzuki, Kotaro Yamamoto, Yuichi Morita, Takashi Arai, Issei Fukunaga, Wataru Uchida, Koji Kamagata, Osamu Abe, Ryohei Kuwatsuru, Akio Saiura, Kenichi Ikejima, René Botnar, Claudia Prieto, Shigeki Aoki\",\"doi\":\"10.1148/rycan.230036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To evaluate the feasibility of liver MR fingerprinting (MRF) for quantitative characterization and diagnosis of focal liver lesions. Materials and Methods This single-site, prospective study included 89 participants (mean age, 62 years ± 15 [SD]; 45 women, 44 men) with various focal liver lesions who underwent MRI between October 2021 and August 2022. The participants underwent routine clinical MRI, non-contrast-enhanced liver MRF, and reference quantitative MRI with a 1.5-T MRI scanner. The bias and repeatability of the MRF measurements were assessed using linear regression, Bland-Altman plots, and coefficients of variation. The diagnostic capability of MRF-derived T1, T2, T2*, proton density fat fraction (PDFF), and a combination of these metrics to distinguish benign from malignant lesions was analyzed according to the area under the receiver operating characteristic curve (AUC). Results Liver MRF measurements showed moderate to high agreement with reference measurements (intraclass correlation = 0.94, 0.77, 0.45, and 0.61 for T1, T2, T2*, and PDFF, respectively), with underestimation of T2 values (mean bias in lesion = -0.5%, -29%, 5.8%, and -8.2% for T1, T2, T2*, and PDFF, respectively). The median coefficients of variation for repeatability of T1, T2, and T2* values were 2.5% (IQR, 3.6%), 3.1% (IQR, 5.6%), and 6.6% (IQR, 13.9%), respectively. After considering multicollinearity, a combination of MRF measurements showed a high diagnostic performance in differentiating benign from malignant lesions (AUC = 0.92 [95% CI: 0.86, 0.98]). Conclusion Liver MRF enabled the quantitative characterization of various focal liver lesions in a single breath-hold acquisition. <b>Keywords:</b> MR Imaging, Abdomen/GI, Liver, Imaging Sequences, Technical Aspects, Tissue Characterization, Technology Assessment, Diagnosis, Liver Lesions, MR Fingerprinting, Quantitative Characterization <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>\",\"PeriodicalId\":20786,\"journal\":{\"name\":\"Radiology. Imaging cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698593/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology. Imaging cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/rycan.230036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Imaging cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/rycan.230036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的探讨肝脏MR指纹识别(MRF)在肝局灶性病变定量诊断中的可行性。材料与方法本研究纳入89名参与者(平均年龄62岁±15岁[SD];45名女性,44名男性)在2021年10月至2022年8月期间接受了MRI检查。参与者接受常规临床MRI,非对比增强肝脏MRI和参考定量MRI与1.5 t MRI扫描仪。使用线性回归、Bland-Altman图和变异系数评估MRF测量的偏倚和可重复性。根据受者工作特征曲线下面积(AUC)分析mrf衍生的T1、T2、T2*、质子密度脂肪分数(PDFF)以及这些指标的组合对良恶性病变的诊断能力。结果肝脏MRF测量值与参考测量值具有中等至高度的一致性(T1、T2、T2*和PDFF的类内相关性分别为0.94、0.77、0.45和0.61),T2值被低估(T1、T2、T2*和PDFF的病变平均偏差分别为-0.5%、-29%、5.8%和-8.2%)。T1、T2和T2*值的重复性变异系数中位数分别为2.5% (IQR, 3.6%)、3.1% (IQR, 5.6%)和6.6% (IQR, 13.9%)。考虑多重共线性后,MRF测量组合在区分良恶性病变方面显示出很高的诊断性能(AUC = 0.92 [95% CI: 0.86, 0.98])。结论肝脏磁共振成像能够在单次屏气采集中定量表征各种局灶性肝脏病变。关键词:磁共振成像,腹部/胃肠道,肝脏,成像序列,技术方面,组织表征,技术评估,诊断,肝脏病变,磁共振指纹,定量表征本文有补充材料。©rsna, 2023。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MR Fingerprinting for Contrast Agent-free and Quantitative Characterization of Focal Liver Lesions.

Purpose To evaluate the feasibility of liver MR fingerprinting (MRF) for quantitative characterization and diagnosis of focal liver lesions. Materials and Methods This single-site, prospective study included 89 participants (mean age, 62 years ± 15 [SD]; 45 women, 44 men) with various focal liver lesions who underwent MRI between October 2021 and August 2022. The participants underwent routine clinical MRI, non-contrast-enhanced liver MRF, and reference quantitative MRI with a 1.5-T MRI scanner. The bias and repeatability of the MRF measurements were assessed using linear regression, Bland-Altman plots, and coefficients of variation. The diagnostic capability of MRF-derived T1, T2, T2*, proton density fat fraction (PDFF), and a combination of these metrics to distinguish benign from malignant lesions was analyzed according to the area under the receiver operating characteristic curve (AUC). Results Liver MRF measurements showed moderate to high agreement with reference measurements (intraclass correlation = 0.94, 0.77, 0.45, and 0.61 for T1, T2, T2*, and PDFF, respectively), with underestimation of T2 values (mean bias in lesion = -0.5%, -29%, 5.8%, and -8.2% for T1, T2, T2*, and PDFF, respectively). The median coefficients of variation for repeatability of T1, T2, and T2* values were 2.5% (IQR, 3.6%), 3.1% (IQR, 5.6%), and 6.6% (IQR, 13.9%), respectively. After considering multicollinearity, a combination of MRF measurements showed a high diagnostic performance in differentiating benign from malignant lesions (AUC = 0.92 [95% CI: 0.86, 0.98]). Conclusion Liver MRF enabled the quantitative characterization of various focal liver lesions in a single breath-hold acquisition. Keywords: MR Imaging, Abdomen/GI, Liver, Imaging Sequences, Technical Aspects, Tissue Characterization, Technology Assessment, Diagnosis, Liver Lesions, MR Fingerprinting, Quantitative Characterization Supplemental material is available for this article. © RSNA, 2023.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
2.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信