黄瓜叶片卷曲新德里病毒侵染克隆的分子特征及致病性研究。

Yuzhen Mei, Lingmin Cai, Yaqin Wang, Fangfang Li, Xiuling Yang, Jinghua Yang, Xueping Zhou
{"title":"黄瓜叶片卷曲新德里病毒侵染克隆的分子特征及致病性研究。","authors":"Yuzhen Mei, Lingmin Cai, Yaqin Wang, Fangfang Li, Xiuling Yang, Jinghua Yang, Xueping Zhou","doi":"10.1007/s44154-023-00128-8","DOIUrl":null,"url":null,"abstract":"<p><p>Tomato leaf curl New Delhi virus (ToLCNDV) is a member of the genus Begomovirus, and causes devastating disease in the world. In recent years, ToLCNDV was rapidly spreading in China and induces severe economic losses in agriculture. In this study, we sequenced and characterized the complete genome of ToLCNDV isolates from melon plants showing leaf curling and stunting symptoms in Jiangsu Province of China. We constructed a full-length infectious cDNA clone of ToLCNDV, which could induce systemic infection with typical symptoms in Nicotiana benthamiana, Citrullus melo, and Citrullus lanatus plants through agrobacterium-mediated inoculation. Further experimental evidence demonstrated that the virions produced in plants infected with the infectious clone of ToLCNDV are biologically active and sap-transmissible. We also evaluated the resistance of commercial melon cultivars to ToLCNDV and found all testing melon cultivars were susceptible to ToLCNDV. Collectively, the reverse genetic system developed herein will facilitate further research on biological functions of proteins encoded by ToLCNDV and plant-ToLCNDV interactions, which might provide new insights into breeding resistance germplasm in crops.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"51"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667179/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular characterization and pathogenicity of an infectious clone of tomato leaf curl New Delhi virus isolate infecting Cucumis melo.\",\"authors\":\"Yuzhen Mei, Lingmin Cai, Yaqin Wang, Fangfang Li, Xiuling Yang, Jinghua Yang, Xueping Zhou\",\"doi\":\"10.1007/s44154-023-00128-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tomato leaf curl New Delhi virus (ToLCNDV) is a member of the genus Begomovirus, and causes devastating disease in the world. In recent years, ToLCNDV was rapidly spreading in China and induces severe economic losses in agriculture. In this study, we sequenced and characterized the complete genome of ToLCNDV isolates from melon plants showing leaf curling and stunting symptoms in Jiangsu Province of China. We constructed a full-length infectious cDNA clone of ToLCNDV, which could induce systemic infection with typical symptoms in Nicotiana benthamiana, Citrullus melo, and Citrullus lanatus plants through agrobacterium-mediated inoculation. Further experimental evidence demonstrated that the virions produced in plants infected with the infectious clone of ToLCNDV are biologically active and sap-transmissible. We also evaluated the resistance of commercial melon cultivars to ToLCNDV and found all testing melon cultivars were susceptible to ToLCNDV. Collectively, the reverse genetic system developed herein will facilitate further research on biological functions of proteins encoded by ToLCNDV and plant-ToLCNDV interactions, which might provide new insights into breeding resistance germplasm in crops.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"3 1\",\"pages\":\"51\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667179/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-023-00128-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-023-00128-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

番茄卷叶新德里病毒(ToLCNDV)是Begomovirus属的一个成员,在世界范围内引起毁灭性疾病。近年来,ToLCNDV在中国迅速蔓延,造成了严重的农业经济损失。在这项研究中,我们测序并鉴定了来自中国江苏省甜瓜植物的ToLCNDV分离物的全基因组,这些植物具有卷曲和发育迟缓症状。本研究构建了ToLCNDV的全长感染性cDNA克隆,通过农杆菌介导的接种,可诱导烟叶、甜瓜和小瓜全身性感染,并具有典型症状。进一步的实验证据表明,感染了ToLCNDV的感染克隆的植物产生的病毒粒子具有生物活性和汁液传播性。我们还评估了商品甜瓜品种对ToLCNDV的抗性,发现所有测试甜瓜品种都对ToLCNDV敏感。总的来说,本文建立的反向遗传系统将有助于进一步研究ToLCNDV编码蛋白的生物学功能和植物与ToLCNDV的相互作用,这可能为作物抗性种质的育种提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular characterization and pathogenicity of an infectious clone of tomato leaf curl New Delhi virus isolate infecting Cucumis melo.

Tomato leaf curl New Delhi virus (ToLCNDV) is a member of the genus Begomovirus, and causes devastating disease in the world. In recent years, ToLCNDV was rapidly spreading in China and induces severe economic losses in agriculture. In this study, we sequenced and characterized the complete genome of ToLCNDV isolates from melon plants showing leaf curling and stunting symptoms in Jiangsu Province of China. We constructed a full-length infectious cDNA clone of ToLCNDV, which could induce systemic infection with typical symptoms in Nicotiana benthamiana, Citrullus melo, and Citrullus lanatus plants through agrobacterium-mediated inoculation. Further experimental evidence demonstrated that the virions produced in plants infected with the infectious clone of ToLCNDV are biologically active and sap-transmissible. We also evaluated the resistance of commercial melon cultivars to ToLCNDV and found all testing melon cultivars were susceptible to ToLCNDV. Collectively, the reverse genetic system developed herein will facilitate further research on biological functions of proteins encoded by ToLCNDV and plant-ToLCNDV interactions, which might provide new insights into breeding resistance germplasm in crops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信