{"title":"盐碱化、变暖和水的清晰度下降抑制了小型城市池塘的垂直混合","authors":"Charlie J.G. Loewen, Donald A. Jackson","doi":"10.1002/lol2.10367","DOIUrl":null,"url":null,"abstract":"<p>Urbanization drives multiple environmental changes that influence critical ecosystem processes. Factors such as salinization by deicing road salts, reduced water clarity (and greater light attenuation) from eutrophication and sediment loading, and warming constrain not only the biodiversity of ponds, but also their physical mixing (with consequences for oxygen availability and the provision of ecosystem services). Leveraging an extensive urban gradient in the Greater Toronto Area, we collected summertime depth profiles from 50 stormwater retention ponds to investigate their vertical stratification. We found that water columns were generally stratified but contrary to expectations, we found relatively minor roles of basin area and depth. Instead, we discovered an overwhelming effect of salinity along with significant impacts of temperature and water clarity on water density gradients. Findings extend our fundamental understanding of mixing regimes in small, shallow waterbodies and indicate increasing risks to pond functioning in a warmer and saltier future.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10367","citationCount":"0","resultStr":"{\"title\":\"Salinization, warming, and loss of water clarity inhibit vertical mixing of small urban ponds\",\"authors\":\"Charlie J.G. Loewen, Donald A. Jackson\",\"doi\":\"10.1002/lol2.10367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urbanization drives multiple environmental changes that influence critical ecosystem processes. Factors such as salinization by deicing road salts, reduced water clarity (and greater light attenuation) from eutrophication and sediment loading, and warming constrain not only the biodiversity of ponds, but also their physical mixing (with consequences for oxygen availability and the provision of ecosystem services). Leveraging an extensive urban gradient in the Greater Toronto Area, we collected summertime depth profiles from 50 stormwater retention ponds to investigate their vertical stratification. We found that water columns were generally stratified but contrary to expectations, we found relatively minor roles of basin area and depth. Instead, we discovered an overwhelming effect of salinity along with significant impacts of temperature and water clarity on water density gradients. Findings extend our fundamental understanding of mixing regimes in small, shallow waterbodies and indicate increasing risks to pond functioning in a warmer and saltier future.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10367\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10367\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10367","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Salinization, warming, and loss of water clarity inhibit vertical mixing of small urban ponds
Urbanization drives multiple environmental changes that influence critical ecosystem processes. Factors such as salinization by deicing road salts, reduced water clarity (and greater light attenuation) from eutrophication and sediment loading, and warming constrain not only the biodiversity of ponds, but also their physical mixing (with consequences for oxygen availability and the provision of ecosystem services). Leveraging an extensive urban gradient in the Greater Toronto Area, we collected summertime depth profiles from 50 stormwater retention ponds to investigate their vertical stratification. We found that water columns were generally stratified but contrary to expectations, we found relatively minor roles of basin area and depth. Instead, we discovered an overwhelming effect of salinity along with significant impacts of temperature and water clarity on water density gradients. Findings extend our fundamental understanding of mixing regimes in small, shallow waterbodies and indicate increasing risks to pond functioning in a warmer and saltier future.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.