{"title":"社会科学中的因果推理","authors":"Guido W. Imbens","doi":"10.1146/annurev-statistics-033121-114601","DOIUrl":null,"url":null,"abstract":"Knowledge of causal effects is of great importance to decision makers in a wide variety of settings. In many cases, however, these causal effects are not known to the decision makers and need to be estimated from data. This fundamental problem has been known and studied for many years in many disciplines. In the past thirty years, however, the amount of empirical as well as methodological research in this area has increased dramatically, and so has its scope. It has become more interdisciplinary, and the focus has been more specifically on methods for credibly estimating causal effects in a wide range of both experimental and observational settings. This work has greatly impacted empirical work in the social and biomedical sciences. In this article, I review some of this work and discuss open questions.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"59 8","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Causal Inference in the Social Sciences\",\"authors\":\"Guido W. Imbens\",\"doi\":\"10.1146/annurev-statistics-033121-114601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge of causal effects is of great importance to decision makers in a wide variety of settings. In many cases, however, these causal effects are not known to the decision makers and need to be estimated from data. This fundamental problem has been known and studied for many years in many disciplines. In the past thirty years, however, the amount of empirical as well as methodological research in this area has increased dramatically, and so has its scope. It has become more interdisciplinary, and the focus has been more specifically on methods for credibly estimating causal effects in a wide range of both experimental and observational settings. This work has greatly impacted empirical work in the social and biomedical sciences. In this article, I review some of this work and discuss open questions.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"59 8\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-033121-114601\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-033121-114601","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Knowledge of causal effects is of great importance to decision makers in a wide variety of settings. In many cases, however, these causal effects are not known to the decision makers and need to be estimated from data. This fundamental problem has been known and studied for many years in many disciplines. In the past thirty years, however, the amount of empirical as well as methodological research in this area has increased dramatically, and so has its scope. It has become more interdisciplinary, and the focus has been more specifically on methods for credibly estimating causal effects in a wide range of both experimental and observational settings. This work has greatly impacted empirical work in the social and biomedical sciences. In this article, I review some of this work and discuss open questions.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.