Diego Panzeri, Tommaso Russo, Enrico Arneri, Roberto Carlucci, Gianpiero Cossarini, Igor Isajlović, Svjetlana Krstulović Šifner, Chiara Manfredi, Francesco Masnadi, Marco Reale, Giuseppe Scarcella, Cosimo Solidoro, Maria Teresa Spedicato, Nedo Vrgoč, Walter Zupa, Simone Libralato
{"title":"利用多物种分布模型集合确定混合渔业空间管理的优先区域","authors":"Diego Panzeri, Tommaso Russo, Enrico Arneri, Roberto Carlucci, Gianpiero Cossarini, Igor Isajlović, Svjetlana Krstulović Šifner, Chiara Manfredi, Francesco Masnadi, Marco Reale, Giuseppe Scarcella, Cosimo Solidoro, Maria Teresa Spedicato, Nedo Vrgoč, Walter Zupa, Simone Libralato","doi":"10.1111/faf.12802","DOIUrl":null,"url":null,"abstract":"<p>Spatial fisheries management is widely used to reduce overfishing, rebuild stocks, and protect biodiversity. However, the effectiveness and optimization of spatial measures depend on accurately identifying ecologically meaningful areas, which can be difficult in mixed fisheries. To apply a method generally to a range of target species, we developed an ensemble of species distribution models (e-SDM) that combines general additive models, generalized linear mixed models, random forest, and gradient-boosting machine methods in a training and testing protocol. The e-SDM was used to integrate density indices from two scientific bottom trawl surveys with the geopositional data, relevant oceanographic variables from the three-dimensional physical-biogeochemical operational model, and fishing effort from the vessel monitoring system. The determined best distributions for juveniles and adults are used to determine hot spots of aggregation based on single or multiple target species. We applied e-SDM to juvenile and adult stages of 10 marine demersal species representing 60% of the total demersal landings in the central areas of the Mediterranean Sea. Using the e-SDM results, hot spots of aggregation and grounds potentially more selective were identified for each species and for the target species group of otter trawl and beam trawl fisheries. The results confirm the ecological appropriateness of existing fishery restriction areas and support the identification of locations for new spatial management measures.</p>","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"25 2","pages":"187-204"},"PeriodicalIF":5.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12802","citationCount":"0","resultStr":"{\"title\":\"Identifying priority areas for spatial management of mixed fisheries using ensemble of multi-species distribution models\",\"authors\":\"Diego Panzeri, Tommaso Russo, Enrico Arneri, Roberto Carlucci, Gianpiero Cossarini, Igor Isajlović, Svjetlana Krstulović Šifner, Chiara Manfredi, Francesco Masnadi, Marco Reale, Giuseppe Scarcella, Cosimo Solidoro, Maria Teresa Spedicato, Nedo Vrgoč, Walter Zupa, Simone Libralato\",\"doi\":\"10.1111/faf.12802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatial fisheries management is widely used to reduce overfishing, rebuild stocks, and protect biodiversity. However, the effectiveness and optimization of spatial measures depend on accurately identifying ecologically meaningful areas, which can be difficult in mixed fisheries. To apply a method generally to a range of target species, we developed an ensemble of species distribution models (e-SDM) that combines general additive models, generalized linear mixed models, random forest, and gradient-boosting machine methods in a training and testing protocol. The e-SDM was used to integrate density indices from two scientific bottom trawl surveys with the geopositional data, relevant oceanographic variables from the three-dimensional physical-biogeochemical operational model, and fishing effort from the vessel monitoring system. The determined best distributions for juveniles and adults are used to determine hot spots of aggregation based on single or multiple target species. We applied e-SDM to juvenile and adult stages of 10 marine demersal species representing 60% of the total demersal landings in the central areas of the Mediterranean Sea. Using the e-SDM results, hot spots of aggregation and grounds potentially more selective were identified for each species and for the target species group of otter trawl and beam trawl fisheries. The results confirm the ecological appropriateness of existing fishery restriction areas and support the identification of locations for new spatial management measures.</p>\",\"PeriodicalId\":169,\"journal\":{\"name\":\"Fish and Fisheries\",\"volume\":\"25 2\",\"pages\":\"187-204\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/faf.12802\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/faf.12802\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/faf.12802","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Identifying priority areas for spatial management of mixed fisheries using ensemble of multi-species distribution models
Spatial fisheries management is widely used to reduce overfishing, rebuild stocks, and protect biodiversity. However, the effectiveness and optimization of spatial measures depend on accurately identifying ecologically meaningful areas, which can be difficult in mixed fisheries. To apply a method generally to a range of target species, we developed an ensemble of species distribution models (e-SDM) that combines general additive models, generalized linear mixed models, random forest, and gradient-boosting machine methods in a training and testing protocol. The e-SDM was used to integrate density indices from two scientific bottom trawl surveys with the geopositional data, relevant oceanographic variables from the three-dimensional physical-biogeochemical operational model, and fishing effort from the vessel monitoring system. The determined best distributions for juveniles and adults are used to determine hot spots of aggregation based on single or multiple target species. We applied e-SDM to juvenile and adult stages of 10 marine demersal species representing 60% of the total demersal landings in the central areas of the Mediterranean Sea. Using the e-SDM results, hot spots of aggregation and grounds potentially more selective were identified for each species and for the target species group of otter trawl and beam trawl fisheries. The results confirm the ecological appropriateness of existing fishery restriction areas and support the identification of locations for new spatial management measures.
期刊介绍:
Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.