Robin R. Rohwer, Robert Ladwig, Paul C. Hanson, Jake R. Walsh, M. Jake Vander Zanden, Hilary A. Dugan
{"title":"富营养化湖泊物种入侵后缺氧增加","authors":"Robin R. Rohwer, Robert Ladwig, Paul C. Hanson, Jake R. Walsh, M. Jake Vander Zanden, Hilary A. Dugan","doi":"10.1002/lol2.10364","DOIUrl":null,"url":null,"abstract":"<p>Species invasions can disrupt aquatic ecosystems by re-wiring food webs. A trophic cascade triggered by the invasion of the predatory zooplankter spiny water flea (<i>Bythotrephes cederströmii</i>) resulted in increased phytoplankton due to decreased zooplankton grazing. Here, we show that increased phytoplankton biomass led to an increase in lake anoxia. The temporal and spatial extent of anoxia experienced a step change increase coincident with the invasion, and anoxic factor increased by 11 d. Post-invasion, anoxia established more quickly following spring stratification, driven by an increase in phytoplankton biomass. A shift in spring phytoplankton phenology encompassed both abundance and community composition. Diatoms (<i>Bacillaryophyta</i>) drove the increase in spring phytoplankton biomass, but not all phytoplankton community members increased, shifting the community composition. We infer that increased phytoplankton biomass increased labile organic matter and drove hypolimnetic oxygen consumption. These results demonstrate how a species invasion can shift lake phenology and biogeochemistry.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 1","pages":"33-42"},"PeriodicalIF":5.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10364","citationCount":"0","resultStr":"{\"title\":\"Increased anoxia following species invasion of a eutrophic lake\",\"authors\":\"Robin R. Rohwer, Robert Ladwig, Paul C. Hanson, Jake R. Walsh, M. Jake Vander Zanden, Hilary A. Dugan\",\"doi\":\"10.1002/lol2.10364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Species invasions can disrupt aquatic ecosystems by re-wiring food webs. A trophic cascade triggered by the invasion of the predatory zooplankter spiny water flea (<i>Bythotrephes cederströmii</i>) resulted in increased phytoplankton due to decreased zooplankton grazing. Here, we show that increased phytoplankton biomass led to an increase in lake anoxia. The temporal and spatial extent of anoxia experienced a step change increase coincident with the invasion, and anoxic factor increased by 11 d. Post-invasion, anoxia established more quickly following spring stratification, driven by an increase in phytoplankton biomass. A shift in spring phytoplankton phenology encompassed both abundance and community composition. Diatoms (<i>Bacillaryophyta</i>) drove the increase in spring phytoplankton biomass, but not all phytoplankton community members increased, shifting the community composition. We infer that increased phytoplankton biomass increased labile organic matter and drove hypolimnetic oxygen consumption. These results demonstrate how a species invasion can shift lake phenology and biogeochemistry.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"9 1\",\"pages\":\"33-42\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10364\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10364\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10364","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Increased anoxia following species invasion of a eutrophic lake
Species invasions can disrupt aquatic ecosystems by re-wiring food webs. A trophic cascade triggered by the invasion of the predatory zooplankter spiny water flea (Bythotrephes cederströmii) resulted in increased phytoplankton due to decreased zooplankton grazing. Here, we show that increased phytoplankton biomass led to an increase in lake anoxia. The temporal and spatial extent of anoxia experienced a step change increase coincident with the invasion, and anoxic factor increased by 11 d. Post-invasion, anoxia established more quickly following spring stratification, driven by an increase in phytoplankton biomass. A shift in spring phytoplankton phenology encompassed both abundance and community composition. Diatoms (Bacillaryophyta) drove the increase in spring phytoplankton biomass, but not all phytoplankton community members increased, shifting the community composition. We infer that increased phytoplankton biomass increased labile organic matter and drove hypolimnetic oxygen consumption. These results demonstrate how a species invasion can shift lake phenology and biogeochemistry.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.