{"title":"微眼液预备对中央凹拥挤的改变。","authors":"Krishnamachari S. Prahalad , Daniel R. Coates","doi":"10.1016/j.visres.2023.108338","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Visual stimuli presented around the time of a </span>saccade<span> have been shown to be perceived differently by the visual system, including a reduction in the harmful impact of flankers (crowding). However, whether the effects observed are due strictly to crowding remains controversial, and the effects have only been measured with large saccades in peripheral vision. Here we investigate how crowded stimuli placed 20 arc minutes from the center of gaze are affected by an upcoming </span></span>microsaccade. The stimulus consisted of a rotated T of size 6.25 arcminutes that was either unflanked, surrounded by four flankers (Experiment 1), or surrounded by two flankers that were positioned either radially or tangentially (Experiments 2 and 3). In 80 % of trials, subjects made voluntary microsaccades to the target when cued, and in the remaining 20 % of the trials subjects continued to maintain fixation. In Experiments 1 and 2, subjects were required to saccade to the same location as the target, while in Experiment 3 subjects saccaded to a different location ∼ 20 arc min to the upper left of the target. Thus, we provide evidence for two separable pre-saccadic benefits for crowded parafoveal targets: one isotropizes the crowding zone for stimuli presented 200 to 125 ms before microsaccadic onset, and another provides a benefit exclusively for microsaccade targets surrounded by tangential flankers in the presence of imminent microsaccades. Two possible mechanisms are attentional enhancement and predictive remapping of receptive fields, respectively.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alterations to foveal crowding with microsaccade preparation\",\"authors\":\"Krishnamachari S. Prahalad , Daniel R. Coates\",\"doi\":\"10.1016/j.visres.2023.108338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Visual stimuli presented around the time of a </span>saccade<span> have been shown to be perceived differently by the visual system, including a reduction in the harmful impact of flankers (crowding). However, whether the effects observed are due strictly to crowding remains controversial, and the effects have only been measured with large saccades in peripheral vision. Here we investigate how crowded stimuli placed 20 arc minutes from the center of gaze are affected by an upcoming </span></span>microsaccade. The stimulus consisted of a rotated T of size 6.25 arcminutes that was either unflanked, surrounded by four flankers (Experiment 1), or surrounded by two flankers that were positioned either radially or tangentially (Experiments 2 and 3). In 80 % of trials, subjects made voluntary microsaccades to the target when cued, and in the remaining 20 % of the trials subjects continued to maintain fixation. In Experiments 1 and 2, subjects were required to saccade to the same location as the target, while in Experiment 3 subjects saccaded to a different location ∼ 20 arc min to the upper left of the target. Thus, we provide evidence for two separable pre-saccadic benefits for crowded parafoveal targets: one isotropizes the crowding zone for stimuli presented 200 to 125 ms before microsaccadic onset, and another provides a benefit exclusively for microsaccade targets surrounded by tangential flankers in the presence of imminent microsaccades. Two possible mechanisms are attentional enhancement and predictive remapping of receptive fields, respectively.</p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698923001621\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698923001621","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Alterations to foveal crowding with microsaccade preparation
Visual stimuli presented around the time of a saccade have been shown to be perceived differently by the visual system, including a reduction in the harmful impact of flankers (crowding). However, whether the effects observed are due strictly to crowding remains controversial, and the effects have only been measured with large saccades in peripheral vision. Here we investigate how crowded stimuli placed 20 arc minutes from the center of gaze are affected by an upcoming microsaccade. The stimulus consisted of a rotated T of size 6.25 arcminutes that was either unflanked, surrounded by four flankers (Experiment 1), or surrounded by two flankers that were positioned either radially or tangentially (Experiments 2 and 3). In 80 % of trials, subjects made voluntary microsaccades to the target when cued, and in the remaining 20 % of the trials subjects continued to maintain fixation. In Experiments 1 and 2, subjects were required to saccade to the same location as the target, while in Experiment 3 subjects saccaded to a different location ∼ 20 arc min to the upper left of the target. Thus, we provide evidence for two separable pre-saccadic benefits for crowded parafoveal targets: one isotropizes the crowding zone for stimuli presented 200 to 125 ms before microsaccadic onset, and another provides a benefit exclusively for microsaccade targets surrounded by tangential flankers in the presence of imminent microsaccades. Two possible mechanisms are attentional enhancement and predictive remapping of receptive fields, respectively.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.