{"title":"可整除细分的紧界","authors":"Shagnik Das , Nemanja Draganić , Raphael Steiner","doi":"10.1016/j.jctb.2023.10.011","DOIUrl":null,"url":null,"abstract":"<div><p>Alon and Krivelevich proved that for every <em>n</em>-vertex subcubic graph <em>H</em> and every integer <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span> there exists a (smallest) integer <span><math><mi>f</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-minor contains a subdivision of <em>H</em> in which the length of every subdivision-path is divisible by <em>q</em>. Improving their superexponential bound, we show that <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>21</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>q</mi><mi>n</mi><mo>+</mo><mn>8</mn><mi>n</mi><mo>+</mo><mn>14</mn><mi>q</mi></math></span>, which is optimal up to a constant multiplicative factor.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623000941/pdfft?md5=0b6cb15d113f5a221914b5ec07224f3a&pid=1-s2.0-S0095895623000941-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Tight bounds for divisible subdivisions\",\"authors\":\"Shagnik Das , Nemanja Draganić , Raphael Steiner\",\"doi\":\"10.1016/j.jctb.2023.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alon and Krivelevich proved that for every <em>n</em>-vertex subcubic graph <em>H</em> and every integer <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span> there exists a (smallest) integer <span><math><mi>f</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-minor contains a subdivision of <em>H</em> in which the length of every subdivision-path is divisible by <em>q</em>. Improving their superexponential bound, we show that <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>21</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>q</mi><mi>n</mi><mo>+</mo><mn>8</mn><mi>n</mi><mo>+</mo><mn>14</mn><mi>q</mi></math></span>, which is optimal up to a constant multiplicative factor.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000941/pdfft?md5=0b6cb15d113f5a221914b5ec07224f3a&pid=1-s2.0-S0095895623000941-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000941\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000941","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Alon and Krivelevich proved that for every n-vertex subcubic graph H and every integer there exists a (smallest) integer such that every -minor contains a subdivision of H in which the length of every subdivision-path is divisible by q. Improving their superexponential bound, we show that , which is optimal up to a constant multiplicative factor.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.