可整除细分的紧界

IF 1.2 1区 数学 Q1 MATHEMATICS
Shagnik Das , Nemanja Draganić , Raphael Steiner
{"title":"可整除细分的紧界","authors":"Shagnik Das ,&nbsp;Nemanja Draganić ,&nbsp;Raphael Steiner","doi":"10.1016/j.jctb.2023.10.011","DOIUrl":null,"url":null,"abstract":"<div><p>Alon and Krivelevich proved that for every <em>n</em>-vertex subcubic graph <em>H</em> and every integer <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span> there exists a (smallest) integer <span><math><mi>f</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-minor contains a subdivision of <em>H</em> in which the length of every subdivision-path is divisible by <em>q</em>. Improving their superexponential bound, we show that <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>21</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>q</mi><mi>n</mi><mo>+</mo><mn>8</mn><mi>n</mi><mo>+</mo><mn>14</mn><mi>q</mi></math></span>, which is optimal up to a constant multiplicative factor.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"165 ","pages":"Pages 1-19"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623000941/pdfft?md5=0b6cb15d113f5a221914b5ec07224f3a&pid=1-s2.0-S0095895623000941-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Tight bounds for divisible subdivisions\",\"authors\":\"Shagnik Das ,&nbsp;Nemanja Draganić ,&nbsp;Raphael Steiner\",\"doi\":\"10.1016/j.jctb.2023.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alon and Krivelevich proved that for every <em>n</em>-vertex subcubic graph <em>H</em> and every integer <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span> there exists a (smallest) integer <span><math><mi>f</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> such that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>-minor contains a subdivision of <em>H</em> in which the length of every subdivision-path is divisible by <em>q</em>. Improving their superexponential bound, we show that <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>,</mo><mi>q</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>21</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>q</mi><mi>n</mi><mo>+</mo><mn>8</mn><mi>n</mi><mo>+</mo><mn>14</mn><mi>q</mi></math></span>, which is optimal up to a constant multiplicative factor.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"165 \",\"pages\":\"Pages 1-19\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000941/pdfft?md5=0b6cb15d113f5a221914b5ec07224f3a&pid=1-s2.0-S0095895623000941-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000941\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000941","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Alon和Krivelevich证明了对于每一个n顶点次三次图H和每一个整数q≥2,存在一个(最小)整数f=f(H,q),使得每一个Kf-minor都包含H的一个细分,其中每个细分路径的长度都可以被q整除。改进了他们的超指数界,证明了f(H,q)≤212qn+8n+14q是最优的,直到一个常数乘因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight bounds for divisible subdivisions

Alon and Krivelevich proved that for every n-vertex subcubic graph H and every integer q2 there exists a (smallest) integer f=f(H,q) such that every Kf-minor contains a subdivision of H in which the length of every subdivision-path is divisible by q. Improving their superexponential bound, we show that f(H,q)212qn+8n+14q, which is optimal up to a constant multiplicative factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信