边连通性的广义切树

IF 1.2 1区 数学 Q1 MATHEMATICS
On-Hei Solomon Lo , Jens M. Schmidt
{"title":"边连通性的广义切树","authors":"On-Hei Solomon Lo ,&nbsp;Jens M. Schmidt","doi":"10.1016/j.jctb.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation <em>R</em> on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:</p><ul><li><span>•</span><span><p>A pair of vertices <span><math><mo>{</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>}</mo></math></span> of a graph <em>G</em> is <em>pendant</em> if <span><math><mi>λ</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>}</mo></math></span>. Mader showed in 1974 that every simple graph with minimum degree <em>δ</em> contains at least <span><math><mi>δ</mi><mo>(</mo><mi>δ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> pendant pairs. We improve this lower bound to <span><math><mi>δ</mi><mi>n</mi><mo>/</mo><mn>24</mn></math></span> for every simple graph <em>G</em> on <em>n</em> vertices with <span><math><mi>δ</mi><mo>≥</mo><mn>5</mn></math></span> or <span><math><mi>λ</mi><mo>≥</mo><mn>4</mn></math></span> or vertex connectivity <span><math><mi>κ</mi><mo>≥</mo><mn>3</mn></math></span>, and show that this is optimal up to a constant factor with regard to every parameter.</p></span></li><li><span>•</span><span><p>Every simple graph <em>G</em> satisfying <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> has <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> <em>δ</em>-edge-connected components. Moreover, every simple graph <em>G</em> that satisfies <span><math><mn>0</mn><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mi>δ</mi></math></span> has <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> cuts of size less than <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>}</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌊</mo><mn>2</mn><mi>α</mi><mo>⌋</mo></mrow></msup><mo>)</mo></math></span> cuts of size at most <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>α</mi><mo>⋅</mo><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> for any given real number <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span>.</p></span></li><li><span>•</span><span><p>A cut is <em>trivial</em> if it or its complement in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph <em>G</em> on <em>n</em> vertices that satisfies <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>, we can compute vertex subsets of <em>G</em> in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of <em>G</em> and leaves a graph having <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> vertices and <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges.</p></span></li></ul></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"165 ","pages":"Pages 47-67"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized cut trees for edge-connectivity\",\"authors\":\"On-Hei Solomon Lo ,&nbsp;Jens M. Schmidt\",\"doi\":\"10.1016/j.jctb.2023.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation <em>R</em> on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:</p><ul><li><span>•</span><span><p>A pair of vertices <span><math><mo>{</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>}</mo></math></span> of a graph <em>G</em> is <em>pendant</em> if <span><math><mi>λ</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>}</mo></math></span>. Mader showed in 1974 that every simple graph with minimum degree <em>δ</em> contains at least <span><math><mi>δ</mi><mo>(</mo><mi>δ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> pendant pairs. We improve this lower bound to <span><math><mi>δ</mi><mi>n</mi><mo>/</mo><mn>24</mn></math></span> for every simple graph <em>G</em> on <em>n</em> vertices with <span><math><mi>δ</mi><mo>≥</mo><mn>5</mn></math></span> or <span><math><mi>λ</mi><mo>≥</mo><mn>4</mn></math></span> or vertex connectivity <span><math><mi>κ</mi><mo>≥</mo><mn>3</mn></math></span>, and show that this is optimal up to a constant factor with regard to every parameter.</p></span></li><li><span>•</span><span><p>Every simple graph <em>G</em> satisfying <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> has <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> <em>δ</em>-edge-connected components. Moreover, every simple graph <em>G</em> that satisfies <span><math><mn>0</mn><mo>&lt;</mo><mi>λ</mi><mo>&lt;</mo><mi>δ</mi></math></span> has <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> cuts of size less than <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>}</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌊</mo><mn>2</mn><mi>α</mi><mo>⌋</mo></mrow></msup><mo>)</mo></math></span> cuts of size at most <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>α</mi><mo>⋅</mo><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> for any given real number <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span>.</p></span></li><li><span>•</span><span><p>A cut is <em>trivial</em> if it or its complement in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph <em>G</em> on <em>n</em> vertices that satisfies <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>, we can compute vertex subsets of <em>G</em> in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of <em>G</em> and leaves a graph having <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> vertices and <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges.</p></span></li></ul></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"165 \",\"pages\":\"Pages 47-67\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000977\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000977","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了三种图的切树,每一种树都提供了对边连接结构的见解。这三种切树的共同之处在于它们都是根据图的顶点集上给定的二元对称关系R来定义的,这是对Gomory-Hu树的推广。应用这些切树,我们证明了:•当λ(v,w)=min (d(v),d(w)}时,图G的一对顶点{v,w}是垂坠的。Mader在1974年证明了每个最小度为δ的简单图至少包含δ(δ+1)/2个垂坠对。对于n个顶点δ≥5或λ≥4或顶点连通性κ≥3的简单图G,我们将这个下界改进为δn/24,并表明这对于每个参数来说都是最优的,直到一个常数因子。•每个满足δ>0的简单图G都有O(n/δ)个δ边连通分量。此外,对于任意给定的实数α≥1,满足0<λ<δ的每一个简单图G都有O((n/δ)2)个小于min δ {32λ,δ}的切,以及O((n/δ)⌊2α⌋的切,切的大小不超过min δ {α⋅λ,δ−1}。•如果一个cut或它在V(G)中的补项是单例,则该cut是平凡的。我们提供了Lo等人最近的结果的另一种证明:给定一个简单的图G在n个顶点上满足δ>0,我们可以在近线性时间内计算G的顶点子集,这样分别压缩这些顶点子集保留G的所有非平凡最小切,并留下一个具有O(n/δ)顶点和O(n)条边的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized cut trees for edge-connectivity

We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation R on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:

  • A pair of vertices {v,w} of a graph G is pendant if λ(v,w)=min{d(v),d(w)}. Mader showed in 1974 that every simple graph with minimum degree δ contains at least δ(δ+1)/2 pendant pairs. We improve this lower bound to δn/24 for every simple graph G on n vertices with δ5 or λ4 or vertex connectivity κ3, and show that this is optimal up to a constant factor with regard to every parameter.

  • Every simple graph G satisfying δ>0 has O(n/δ) δ-edge-connected components. Moreover, every simple graph G that satisfies 0<λ<δ has O((n/δ)2) cuts of size less than min{32λ,δ}, and O((n/δ)2α) cuts of size at most min{αλ,δ1} for any given real number α1.

  • A cut is trivial if it or its complement in V(G) is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph G on n vertices that satisfies δ>0, we can compute vertex subsets of G in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of G and leaves a graph having O(n/δ) vertices and O(n) edges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信