{"title":"边连通性的广义切树","authors":"On-Hei Solomon Lo , Jens M. Schmidt","doi":"10.1016/j.jctb.2023.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation <em>R</em> on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:</p><ul><li><span>•</span><span><p>A pair of vertices <span><math><mo>{</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>}</mo></math></span> of a graph <em>G</em> is <em>pendant</em> if <span><math><mi>λ</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>}</mo></math></span>. Mader showed in 1974 that every simple graph with minimum degree <em>δ</em> contains at least <span><math><mi>δ</mi><mo>(</mo><mi>δ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> pendant pairs. We improve this lower bound to <span><math><mi>δ</mi><mi>n</mi><mo>/</mo><mn>24</mn></math></span> for every simple graph <em>G</em> on <em>n</em> vertices with <span><math><mi>δ</mi><mo>≥</mo><mn>5</mn></math></span> or <span><math><mi>λ</mi><mo>≥</mo><mn>4</mn></math></span> or vertex connectivity <span><math><mi>κ</mi><mo>≥</mo><mn>3</mn></math></span>, and show that this is optimal up to a constant factor with regard to every parameter.</p></span></li><li><span>•</span><span><p>Every simple graph <em>G</em> satisfying <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span> has <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> <em>δ</em>-edge-connected components. Moreover, every simple graph <em>G</em> that satisfies <span><math><mn>0</mn><mo><</mo><mi>λ</mi><mo><</mo><mi>δ</mi></math></span> has <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> cuts of size less than <span><math><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>}</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌊</mo><mn>2</mn><mi>α</mi><mo>⌋</mo></mrow></msup><mo>)</mo></math></span> cuts of size at most <span><math><mi>min</mi><mo></mo><mo>{</mo><mi>α</mi><mo>⋅</mo><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> for any given real number <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span>.</p></span></li><li><span>•</span><span><p>A cut is <em>trivial</em> if it or its complement in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph <em>G</em> on <em>n</em> vertices that satisfies <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span>, we can compute vertex subsets of <em>G</em> in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of <em>G</em> and leaves a graph having <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> vertices and <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges.</p></span></li></ul></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized cut trees for edge-connectivity\",\"authors\":\"On-Hei Solomon Lo , Jens M. Schmidt\",\"doi\":\"10.1016/j.jctb.2023.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation <em>R</em> on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:</p><ul><li><span>•</span><span><p>A pair of vertices <span><math><mo>{</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>}</mo></math></span> of a graph <em>G</em> is <em>pendant</em> if <span><math><mi>λ</mi><mo>(</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>min</mi><mo></mo><mo>{</mo><mi>d</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>}</mo></math></span>. Mader showed in 1974 that every simple graph with minimum degree <em>δ</em> contains at least <span><math><mi>δ</mi><mo>(</mo><mi>δ</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span> pendant pairs. We improve this lower bound to <span><math><mi>δ</mi><mi>n</mi><mo>/</mo><mn>24</mn></math></span> for every simple graph <em>G</em> on <em>n</em> vertices with <span><math><mi>δ</mi><mo>≥</mo><mn>5</mn></math></span> or <span><math><mi>λ</mi><mo>≥</mo><mn>4</mn></math></span> or vertex connectivity <span><math><mi>κ</mi><mo>≥</mo><mn>3</mn></math></span>, and show that this is optimal up to a constant factor with regard to every parameter.</p></span></li><li><span>•</span><span><p>Every simple graph <em>G</em> satisfying <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span> has <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> <em>δ</em>-edge-connected components. Moreover, every simple graph <em>G</em> that satisfies <span><math><mn>0</mn><mo><</mo><mi>λ</mi><mo><</mo><mi>δ</mi></math></span> has <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> cuts of size less than <span><math><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>}</mo></math></span>, and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mo>⌊</mo><mn>2</mn><mi>α</mi><mo>⌋</mo></mrow></msup><mo>)</mo></math></span> cuts of size at most <span><math><mi>min</mi><mo></mo><mo>{</mo><mi>α</mi><mo>⋅</mo><mi>λ</mi><mo>,</mo><mi>δ</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> for any given real number <span><math><mi>α</mi><mo>≥</mo><mn>1</mn></math></span>.</p></span></li><li><span>•</span><span><p>A cut is <em>trivial</em> if it or its complement in <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph <em>G</em> on <em>n</em> vertices that satisfies <span><math><mi>δ</mi><mo>></mo><mn>0</mn></math></span>, we can compute vertex subsets of <em>G</em> in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of <em>G</em> and leaves a graph having <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>δ</mi><mo>)</mo></math></span> vertices and <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> edges.</p></span></li></ul></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000977\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000977","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We present three cut trees of graphs, each of them giving insights into the edge-connectivity structure. All three cut trees have in common that they are defined with respect to a given binary symmetric relation R on the vertex set of the graph, which generalizes Gomory-Hu trees. Applying these cut trees, we prove the following:
•
A pair of vertices of a graph G is pendant if . Mader showed in 1974 that every simple graph with minimum degree δ contains at least pendant pairs. We improve this lower bound to for every simple graph G on n vertices with or or vertex connectivity , and show that this is optimal up to a constant factor with regard to every parameter.
•
Every simple graph G satisfying has δ-edge-connected components. Moreover, every simple graph G that satisfies has cuts of size less than , and cuts of size at most for any given real number .
•
A cut is trivial if it or its complement in is a singleton. We provide an alternative proof of the following recent result of Lo et al.: Given a simple graph G on n vertices that satisfies , we can compute vertex subsets of G in near-linear time such that contracting these vertex subsets separately preserves all non-trivial min-cuts of G and leaves a graph having vertices and edges.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.