U(sl2)的Clebsch-Gordan系数和Johnson图的Terwilliger代数

IF 0.9 2区 数学 Q2 MATHEMATICS
Hau-Wen Huang
{"title":"U(sl2)的Clebsch-Gordan系数和Johnson图的Terwilliger代数","authors":"Hau-Wen Huang","doi":"10.1016/j.jcta.2023.105833","DOIUrl":null,"url":null,"abstract":"<div><p><span>The universal enveloping algebra </span><span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> is a unital associative algebra over </span><span><math><mi>C</mi></math></span> generated by <span><math><mi>E</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>H</mi></math></span> subject to the relations<span><span><span><math><mrow><mo>[</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>]</mo><mo>=</mo><mn>2</mn><mi>E</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mo>−</mo><mn>2</mn><mi>F</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mi>H</mi><mo>.</mo></mrow></math></span></span></span> The element<span><span><span><math><mi>Λ</mi><mo>=</mo><mi>E</mi><mi>F</mi><mo>+</mo><mi>F</mi><mi>E</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span></span></span> is called the Casimir element of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let <span><math><mi>Δ</mi><mo>:</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> denote the comultiplication of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The universal Hahn algebra <span><math><mi>H</mi></math></span> is a unital associative algebra over <span><math><mi>C</mi></math></span> generated by <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi></math></span> and the relations assert that <span><math><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo><mo>=</mo><mi>C</mi></math></span> and each of<span><span><span><math><mrow><mo>[</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>]</mo><mo>+</mo><mn>2</mn><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>]</mo><mo>+</mo><mn>4</mn><mi>B</mi><mi>A</mi><mo>+</mo><mn>2</mn><mi>C</mi></mrow></math></span></span></span> is central in <span><math><mi>H</mi></math></span>. Inspired by the Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span>, we discover an algebra homomorphism </span><span><math><mo>♮</mo><mo>:</mo><mi>H</mi><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> that maps<span><span><span><math><mi>A</mi><mo>↦</mo><mfrac><mrow><mi>H</mi><mo>⊗</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>⊗</mo><mi>H</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mi>B</mi><mo>↦</mo><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>Λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>C</mi><mo>↦</mo><mi>E</mi><mo>⊗</mo><mi>F</mi><mo>−</mo><mi>F</mi><mo>⊗</mo><mi>E</mi><mo>.</mo></math></span></span></span> By pulling back via ♮ any <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module can be considered as an <span><math><mi>H</mi></math></span>-module. For any integer <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> there exists a unique <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional irreducible <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> up to isomorphism. We study the decomposition of the <span><math><mi>H</mi></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for any integers <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span>. We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105833"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs\",\"authors\":\"Hau-Wen Huang\",\"doi\":\"10.1016/j.jcta.2023.105833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The universal enveloping algebra </span><span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> is a unital associative algebra over </span><span><math><mi>C</mi></math></span> generated by <span><math><mi>E</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>H</mi></math></span> subject to the relations<span><span><span><math><mrow><mo>[</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>]</mo><mo>=</mo><mn>2</mn><mi>E</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mo>−</mo><mn>2</mn><mi>F</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mi>H</mi><mo>.</mo></mrow></math></span></span></span> The element<span><span><span><math><mi>Λ</mi><mo>=</mo><mi>E</mi><mi>F</mi><mo>+</mo><mi>F</mi><mi>E</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span></span></span> is called the Casimir element of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let <span><math><mi>Δ</mi><mo>:</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> denote the comultiplication of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The universal Hahn algebra <span><math><mi>H</mi></math></span> is a unital associative algebra over <span><math><mi>C</mi></math></span> generated by <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi></math></span> and the relations assert that <span><math><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo><mo>=</mo><mi>C</mi></math></span> and each of<span><span><span><math><mrow><mo>[</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>]</mo><mo>+</mo><mn>2</mn><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>]</mo><mo>+</mo><mn>4</mn><mi>B</mi><mi>A</mi><mo>+</mo><mn>2</mn><mi>C</mi></mrow></math></span></span></span> is central in <span><math><mi>H</mi></math></span>. Inspired by the Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span>, we discover an algebra homomorphism </span><span><math><mo>♮</mo><mo>:</mo><mi>H</mi><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> that maps<span><span><span><math><mi>A</mi><mo>↦</mo><mfrac><mrow><mi>H</mi><mo>⊗</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>⊗</mo><mi>H</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mi>B</mi><mo>↦</mo><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>Λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>C</mi><mo>↦</mo><mi>E</mi><mo>⊗</mo><mi>F</mi><mo>−</mo><mi>F</mi><mo>⊗</mo><mi>E</mi><mo>.</mo></math></span></span></span> By pulling back via ♮ any <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module can be considered as an <span><math><mi>H</mi></math></span>-module. For any integer <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> there exists a unique <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional irreducible <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> up to isomorphism. We study the decomposition of the <span><math><mi>H</mi></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for any integers <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span>. We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.</span></p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"203 \",\"pages\":\"Article 105833\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523001012\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

sl2的泛包络代数U(sl2)是C上由E,F,H根据[H,E]=2E,[H,F]= - 2F,[E,F]=H生成的一元结合代数。elementΛ=EF+FE+H22称为U(sl2)的卡西米尔元素。设Δ:U(sl2)→U(sl2)⊗U(sl2)表示U(sl2)的乘法。通称Hahn代数H是由a,B,C生成的C上的一元结合代数,关系式表明[a,B]=C,且[C, a]+2A2+B,[B,C]+4BA+2C都在H的中心位置。根据U(sl2)的Clebsch-Gordan系数,我们发现了一个代数同态:H→U(sl2)⊗U(sl2),它映射sa∈H⊗1−1⊗H4,B∈Δ(Λ)2,C∈E⊗F−F⊗E。通过缩回,任何U(sl2)⊗U(sl2)模都可以看作是h模。对于任意整数n≥0,存在一个唯一的(n+1)维不可约U(sl2)模Ln,直至同构。研究了任意整数m,n≥0时h模Lm⊗Ln的分解。我们将这些结果与Johnson图的Terwilliger代数联系起来。我们用二项式系数来表示Johnson图的Terwilliger代数的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs

The universal enveloping algebra U(sl2) of sl2 is a unital associative algebra over C generated by E,F,H subject to the relations[H,E]=2E,[H,F]=2F,[E,F]=H. The elementΛ=EF+FE+H22 is called the Casimir element of U(sl2). Let Δ:U(sl2)U(sl2)U(sl2) denote the comultiplication of U(sl2). The universal Hahn algebra H is a unital associative algebra over C generated by A,B,C and the relations assert that [A,B]=C and each of[C,A]+2A2+B,[B,C]+4BA+2C is central in H. Inspired by the Clebsch–Gordan coefficients of U(sl2), we discover an algebra homomorphism :HU(sl2)U(sl2) that mapsAH11H4,BΔ(Λ)2,CEFFE. By pulling back via ♮ any U(sl2)U(sl2)-module can be considered as an H-module. For any integer n0 there exists a unique (n+1)-dimensional irreducible U(sl2)-module Ln up to isomorphism. We study the decomposition of the H-module LmLn for any integers m,n0. We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信