{"title":"U(sl2)的Clebsch-Gordan系数和Johnson图的Terwilliger代数","authors":"Hau-Wen Huang","doi":"10.1016/j.jcta.2023.105833","DOIUrl":null,"url":null,"abstract":"<div><p><span>The universal enveloping algebra </span><span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> is a unital associative algebra over </span><span><math><mi>C</mi></math></span> generated by <span><math><mi>E</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>H</mi></math></span> subject to the relations<span><span><span><math><mrow><mo>[</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>]</mo><mo>=</mo><mn>2</mn><mi>E</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mo>−</mo><mn>2</mn><mi>F</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mi>H</mi><mo>.</mo></mrow></math></span></span></span> The element<span><span><span><math><mi>Λ</mi><mo>=</mo><mi>E</mi><mi>F</mi><mo>+</mo><mi>F</mi><mi>E</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span></span></span> is called the Casimir element of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let <span><math><mi>Δ</mi><mo>:</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> denote the comultiplication of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The universal Hahn algebra <span><math><mi>H</mi></math></span> is a unital associative algebra over <span><math><mi>C</mi></math></span> generated by <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi></math></span> and the relations assert that <span><math><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo><mo>=</mo><mi>C</mi></math></span> and each of<span><span><span><math><mrow><mo>[</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>]</mo><mo>+</mo><mn>2</mn><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>]</mo><mo>+</mo><mn>4</mn><mi>B</mi><mi>A</mi><mo>+</mo><mn>2</mn><mi>C</mi></mrow></math></span></span></span> is central in <span><math><mi>H</mi></math></span>. Inspired by the Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span>, we discover an algebra homomorphism </span><span><math><mo>♮</mo><mo>:</mo><mi>H</mi><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> that maps<span><span><span><math><mi>A</mi><mo>↦</mo><mfrac><mrow><mi>H</mi><mo>⊗</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>⊗</mo><mi>H</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mi>B</mi><mo>↦</mo><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>Λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>C</mi><mo>↦</mo><mi>E</mi><mo>⊗</mo><mi>F</mi><mo>−</mo><mi>F</mi><mo>⊗</mo><mi>E</mi><mo>.</mo></math></span></span></span> By pulling back via ♮ any <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module can be considered as an <span><math><mi>H</mi></math></span>-module. For any integer <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> there exists a unique <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional irreducible <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> up to isomorphism. We study the decomposition of the <span><math><mi>H</mi></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for any integers <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span>. We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.</span></p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"203 ","pages":"Article 105833"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs\",\"authors\":\"Hau-Wen Huang\",\"doi\":\"10.1016/j.jcta.2023.105833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The universal enveloping algebra </span><span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> of <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span> is a unital associative algebra over </span><span><math><mi>C</mi></math></span> generated by <span><math><mi>E</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>H</mi></math></span> subject to the relations<span><span><span><math><mrow><mo>[</mo><mi>H</mi><mo>,</mo><mi>E</mi><mo>]</mo><mo>=</mo><mn>2</mn><mi>E</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mo>−</mo><mn>2</mn><mi>F</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>]</mo><mo>=</mo><mi>H</mi><mo>.</mo></mrow></math></span></span></span> The element<span><span><span><math><mi>Λ</mi><mo>=</mo><mi>E</mi><mi>F</mi><mo>+</mo><mi>F</mi><mi>E</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac></math></span></span></span> is called the Casimir element of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Let <span><math><mi>Δ</mi><mo>:</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> denote the comultiplication of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. The universal Hahn algebra <span><math><mi>H</mi></math></span> is a unital associative algebra over <span><math><mi>C</mi></math></span> generated by <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi></math></span> and the relations assert that <span><math><mo>[</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>]</mo><mo>=</mo><mi>C</mi></math></span> and each of<span><span><span><math><mrow><mo>[</mo><mi>C</mi><mo>,</mo><mi>A</mi><mo>]</mo><mo>+</mo><mn>2</mn><msup><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mspace></mspace><mo>[</mo><mi>B</mi><mo>,</mo><mi>C</mi><mo>]</mo><mo>+</mo><mn>4</mn><mi>B</mi><mi>A</mi><mo>+</mo><mn>2</mn><mi>C</mi></mrow></math></span></span></span> is central in <span><math><mi>H</mi></math></span>. Inspired by the Clebsch–Gordan coefficients of <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span>, we discover an algebra homomorphism </span><span><math><mo>♮</mo><mo>:</mo><mi>H</mi><mo>→</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> that maps<span><span><span><math><mi>A</mi><mo>↦</mo><mfrac><mrow><mi>H</mi><mo>⊗</mo><mn>1</mn><mo>−</mo><mn>1</mn><mo>⊗</mo><mi>H</mi></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mi>B</mi><mo>↦</mo><mfrac><mrow><mi>Δ</mi><mo>(</mo><mi>Λ</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>C</mi><mo>↦</mo><mi>E</mi><mo>⊗</mo><mi>F</mi><mo>−</mo><mi>F</mi><mo>⊗</mo><mi>E</mi><mo>.</mo></math></span></span></span> By pulling back via ♮ any <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>⊗</mo><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module can be considered as an <span><math><mi>H</mi></math></span>-module. For any integer <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> there exists a unique <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional irreducible <span><math><mi>U</mi><mo>(</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> up to isomorphism. We study the decomposition of the <span><math><mi>H</mi></math></span>-module <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>⊗</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for any integers <span><math><mi>m</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span>. We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.</span></p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"203 \",\"pages\":\"Article 105833\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316523001012\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Clebsch–Gordan coefficients of U(sl2) and the Terwilliger algebras of Johnson graphs
The universal enveloping algebra of is a unital associative algebra over generated by subject to the relations The element is called the Casimir element of . Let denote the comultiplication of . The universal Hahn algebra is a unital associative algebra over generated by and the relations assert that and each of is central in . Inspired by the Clebsch–Gordan coefficients of , we discover an algebra homomorphism that maps By pulling back via ♮ any -module can be considered as an -module. For any integer there exists a unique -dimensional irreducible -module up to isomorphism. We study the decomposition of the -module for any integers . We link these results to the Terwilliger algebras of Johnson graphs. We express the dimensions of the Terwilliger algebras of Johnson graphs in terms of binomial coefficients.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.