基于深度学习的“嫦娥五号”月球表面化学综合制图。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chen Yang, Xinmei Zhang, Lorenzo Bruzzone, Bin Liu, Dawei Liu, Xin Ren, Jon Atli Benediktsson, Yanchun Liang, Bo Yang, Minghao Yin, Haishi Zhao, Renchu Guan, Chunlai Li, Ziyuan Ouyang
{"title":"基于深度学习的“嫦娥五号”月球表面化学综合制图。","authors":"Chen Yang, Xinmei Zhang, Lorenzo Bruzzone, Bin Liu, Dawei Liu, Xin Ren, Jon Atli Benediktsson, Yanchun Liang, Bo Yang, Minghao Yin, Haishi Zhao, Renchu Guan, Chunlai Li, Ziyuan Ouyang","doi":"10.1038/s41467-023-43358-0","DOIUrl":null,"url":null,"abstract":"<p><p>Lunar surface chemistry is essential for revealing petrological characteristics to understand the evolution of the Moon. Existing chemistry mapping from Apollo and Luna returned samples could only calibrate chemical features before 3.0 Gyr, missing the critical late period of the Moon. Here we present major oxides chemistry maps by adding distinctive 2.0 Gyr Chang'e-5 lunar soil samples in combination with a deep learning-based inversion model. The inferred chemical contents are more precise than the Lunar Prospector Gamma-Ray Spectrometer (GRS) maps and are closest to returned samples abundances compared to existing literature. The verification of in situ measurement data acquired by Chang'e 3 and Chang'e 4 lunar rover demonstrated that Chang'e-5 samples are indispensable ground truth in mapping lunar surface chemistry. From these maps, young mare basalt units are determined which can be potential sites in future sample return mission to constrain the late lunar magmatic and thermal history.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"14 1","pages":"7554"},"PeriodicalIF":14.7000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661975/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive mapping of lunar surface chemistry by adding Chang'e-5 samples with deep learning.\",\"authors\":\"Chen Yang, Xinmei Zhang, Lorenzo Bruzzone, Bin Liu, Dawei Liu, Xin Ren, Jon Atli Benediktsson, Yanchun Liang, Bo Yang, Minghao Yin, Haishi Zhao, Renchu Guan, Chunlai Li, Ziyuan Ouyang\",\"doi\":\"10.1038/s41467-023-43358-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lunar surface chemistry is essential for revealing petrological characteristics to understand the evolution of the Moon. Existing chemistry mapping from Apollo and Luna returned samples could only calibrate chemical features before 3.0 Gyr, missing the critical late period of the Moon. Here we present major oxides chemistry maps by adding distinctive 2.0 Gyr Chang'e-5 lunar soil samples in combination with a deep learning-based inversion model. The inferred chemical contents are more precise than the Lunar Prospector Gamma-Ray Spectrometer (GRS) maps and are closest to returned samples abundances compared to existing literature. The verification of in situ measurement data acquired by Chang'e 3 and Chang'e 4 lunar rover demonstrated that Chang'e-5 samples are indispensable ground truth in mapping lunar surface chemistry. From these maps, young mare basalt units are determined which can be potential sites in future sample return mission to constrain the late lunar magmatic and thermal history.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"14 1\",\"pages\":\"7554\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661975/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-023-43358-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-023-43358-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

月球表面化学对于揭示岩石学特征以了解月球的演化至关重要。从阿波罗号和月球号返回的样品中,现有的化学制图只能校准3.0 Gyr之前的化学特征,错过了关键的月球后期。在这里,我们通过添加独特的2.0 Gyr嫦娥5号月球土壤样本,结合基于深度学习的反演模型,绘制了主要的氧化物化学图谱。推断出的化学成分比月球勘探者伽玛射线光谱仪(GRS)地图更精确,与现有文献相比,最接近返回样品的丰度。对“嫦娥三号”和“嫦娥四号”月球车现场测量数据的验证表明,“嫦娥五号”样品是绘制月球表面化学图不可缺少的地面真实数据。根据这些地图,确定了年轻的海玄武岩单元,这些单元可以作为未来样品返回任务的潜在地点,以约束月球晚期的岩浆和热历史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comprehensive mapping of lunar surface chemistry by adding Chang'e-5 samples with deep learning.

Comprehensive mapping of lunar surface chemistry by adding Chang'e-5 samples with deep learning.

Lunar surface chemistry is essential for revealing petrological characteristics to understand the evolution of the Moon. Existing chemistry mapping from Apollo and Luna returned samples could only calibrate chemical features before 3.0 Gyr, missing the critical late period of the Moon. Here we present major oxides chemistry maps by adding distinctive 2.0 Gyr Chang'e-5 lunar soil samples in combination with a deep learning-based inversion model. The inferred chemical contents are more precise than the Lunar Prospector Gamma-Ray Spectrometer (GRS) maps and are closest to returned samples abundances compared to existing literature. The verification of in situ measurement data acquired by Chang'e 3 and Chang'e 4 lunar rover demonstrated that Chang'e-5 samples are indispensable ground truth in mapping lunar surface chemistry. From these maps, young mare basalt units are determined which can be potential sites in future sample return mission to constrain the late lunar magmatic and thermal history.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信