Isabelle Larivière, Benoît Larose, David E. Pazmiño Pullas
{"title":"有向自反环的满射多态性","authors":"Isabelle Larivière, Benoît Larose, David E. Pazmiño Pullas","doi":"10.1007/s00012-023-00834-4","DOIUrl":null,"url":null,"abstract":"<div><p>A <i>reflexive cycle</i> is any reflexive digraph whose underlying undirected graph is a cycle. Call a relational structure <i>Słupecki</i> if its surjective polymorphisms are all essentially unary. We prove that all reflexive cycles of girth at least 4 have this property.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surjective polymorphisms of directed reflexive cycles\",\"authors\":\"Isabelle Larivière, Benoît Larose, David E. Pazmiño Pullas\",\"doi\":\"10.1007/s00012-023-00834-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A <i>reflexive cycle</i> is any reflexive digraph whose underlying undirected graph is a cycle. Call a relational structure <i>Słupecki</i> if its surjective polymorphisms are all essentially unary. We prove that all reflexive cycles of girth at least 4 have this property.</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00834-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00834-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Surjective polymorphisms of directed reflexive cycles
A reflexive cycle is any reflexive digraph whose underlying undirected graph is a cycle. Call a relational structure Słupecki if its surjective polymorphisms are all essentially unary. We prove that all reflexive cycles of girth at least 4 have this property.
期刊介绍:
Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.