Nikolai P. Melnikov, Fyodor V. Bolshakov, Veronika S. Frolova, Kseniia V. Skorentseva, Alexander V. Ereskovsky, Alina A. Saidova, Andrey I. Lavrov
{"title":"海绵组织内稳态:细胞增殖和凋亡的定量分析","authors":"Nikolai P. Melnikov, Fyodor V. Bolshakov, Veronika S. Frolova, Kseniia V. Skorentseva, Alexander V. Ereskovsky, Alina A. Saidova, Andrey I. Lavrov","doi":"10.1002/jez.b.23138","DOIUrl":null,"url":null,"abstract":"<p>Tissues of multicellular animals are maintained due to a tight balance between cell proliferation and programmed cell death. Sponges are early branching metazoans essential to understanding the key mechanisms of tissue homeostasis. This article is dedicated to the comparative analysis of proliferation and apoptosis in intact tissues of two sponges, <i>Halisarca dujardinii</i> (class Demospongiae) and <i>Leucosolenia variabilis</i> (class Calcarea). Labeled nucleotides EdU and anti-phosphorylated histone 3 antibodies reveal a considerable number of cycling cells in intact tissues of both species. Quantitative DNA staining reveals the classic cell cycle distribution curve. The main type of cycling cells are choanocytes - flagellated cells of the aquiferous system. The rate of proliferation remains constant throughout various areas of sponge bodies that contain choanocytes. The EdU tracking experiments conducted in <i>H. dujardinii</i> indicate that choanocytes may give rise to mesohyl cells through migration. The number of apoptotic cells in tissues of both species is insignificant, although being comparable to the renewing tissues of other animals. <i>In vivo</i> studies with tetramethylrhodamine ethyl ester and CellEvent Caspase-3/7 indicate that apoptosis might be independent of mitochondrial outer membrane permeabilization. Altogether, a combination of confocal laser scanning microscopy and flow cytometry provides a quantitative description of cell proliferation and apoptosis in sponges displaying either rapid growth or cell turnover.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tissue homeostasis in sponges: Quantitative analysis of cell proliferation and apoptosis\",\"authors\":\"Nikolai P. Melnikov, Fyodor V. Bolshakov, Veronika S. Frolova, Kseniia V. Skorentseva, Alexander V. Ereskovsky, Alina A. Saidova, Andrey I. Lavrov\",\"doi\":\"10.1002/jez.b.23138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tissues of multicellular animals are maintained due to a tight balance between cell proliferation and programmed cell death. Sponges are early branching metazoans essential to understanding the key mechanisms of tissue homeostasis. This article is dedicated to the comparative analysis of proliferation and apoptosis in intact tissues of two sponges, <i>Halisarca dujardinii</i> (class Demospongiae) and <i>Leucosolenia variabilis</i> (class Calcarea). Labeled nucleotides EdU and anti-phosphorylated histone 3 antibodies reveal a considerable number of cycling cells in intact tissues of both species. Quantitative DNA staining reveals the classic cell cycle distribution curve. The main type of cycling cells are choanocytes - flagellated cells of the aquiferous system. The rate of proliferation remains constant throughout various areas of sponge bodies that contain choanocytes. The EdU tracking experiments conducted in <i>H. dujardinii</i> indicate that choanocytes may give rise to mesohyl cells through migration. The number of apoptotic cells in tissues of both species is insignificant, although being comparable to the renewing tissues of other animals. <i>In vivo</i> studies with tetramethylrhodamine ethyl ester and CellEvent Caspase-3/7 indicate that apoptosis might be independent of mitochondrial outer membrane permeabilization. Altogether, a combination of confocal laser scanning microscopy and flow cytometry provides a quantitative description of cell proliferation and apoptosis in sponges displaying either rapid growth or cell turnover.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23138\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tissue homeostasis in sponges: Quantitative analysis of cell proliferation and apoptosis
Tissues of multicellular animals are maintained due to a tight balance between cell proliferation and programmed cell death. Sponges are early branching metazoans essential to understanding the key mechanisms of tissue homeostasis. This article is dedicated to the comparative analysis of proliferation and apoptosis in intact tissues of two sponges, Halisarca dujardinii (class Demospongiae) and Leucosolenia variabilis (class Calcarea). Labeled nucleotides EdU and anti-phosphorylated histone 3 antibodies reveal a considerable number of cycling cells in intact tissues of both species. Quantitative DNA staining reveals the classic cell cycle distribution curve. The main type of cycling cells are choanocytes - flagellated cells of the aquiferous system. The rate of proliferation remains constant throughout various areas of sponge bodies that contain choanocytes. The EdU tracking experiments conducted in H. dujardinii indicate that choanocytes may give rise to mesohyl cells through migration. The number of apoptotic cells in tissues of both species is insignificant, although being comparable to the renewing tissues of other animals. In vivo studies with tetramethylrhodamine ethyl ester and CellEvent Caspase-3/7 indicate that apoptosis might be independent of mitochondrial outer membrane permeabilization. Altogether, a combination of confocal laser scanning microscopy and flow cytometry provides a quantitative description of cell proliferation and apoptosis in sponges displaying either rapid growth or cell turnover.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.