心血管肿瘤学的数学建模:模拟癌症治疗对心血管系统的系统影响。

IF 12.1 1区 医学 Q1 ONCOLOGY
Camara L. Casson , Sofia A. John , Meghan C. Ferrall-Fairbanks
{"title":"心血管肿瘤学的数学建模:模拟癌症治疗对心血管系统的系统影响。","authors":"Camara L. Casson ,&nbsp;Sofia A. John ,&nbsp;Meghan C. Ferrall-Fairbanks","doi":"10.1016/j.semcancer.2023.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiotoxicity is a common side-effect of many cancer therapeutics; however, to-date there has been very little push to understand the mechanisms underlying this group of pathologies. This has led to the emergence of cardio-oncology, a field of medicine focused on understanding the effects of cancer and its treatment on the human heart. Here, we describe how mechanistic modeling approaches have been applied to study open questions in the cardiovascular system and how these approaches are being increasingly applied to advance knowledge of the underlying effects of cancer treatments on the human heart. A variety of mechanistic, mathematical modeling techniques have been applied to explore the link between common cancer treatments, such as chemotherapy, radiation, targeted therapy, and immunotherapy, and cardiotoxicity, nevertheless there is limited coverage in the different types of cardiac dysfunction that may be associated with these treatments. Moreover, cardiac modeling has a rich heritage of mathematical modeling and is well suited for the further development of novel approaches for understanding the cardiotoxicities associated with cancer therapeutics. There are many opportunities to combine mechanistic, bottom-up approaches with data-driven, top-down approaches to improve personalized, precision oncology to better understand, and ultimately mitigate, cardiac dysfunction in cancer patients.</p></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1044579X23001438/pdfft?md5=93f6da9919c765701550a9f17dbddd8a&pid=1-s2.0-S1044579X23001438-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of cardio-oncology: Modeling the systemic effects of cancer therapeutics on the cardiovascular system\",\"authors\":\"Camara L. Casson ,&nbsp;Sofia A. John ,&nbsp;Meghan C. Ferrall-Fairbanks\",\"doi\":\"10.1016/j.semcancer.2023.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cardiotoxicity is a common side-effect of many cancer therapeutics; however, to-date there has been very little push to understand the mechanisms underlying this group of pathologies. This has led to the emergence of cardio-oncology, a field of medicine focused on understanding the effects of cancer and its treatment on the human heart. Here, we describe how mechanistic modeling approaches have been applied to study open questions in the cardiovascular system and how these approaches are being increasingly applied to advance knowledge of the underlying effects of cancer treatments on the human heart. A variety of mechanistic, mathematical modeling techniques have been applied to explore the link between common cancer treatments, such as chemotherapy, radiation, targeted therapy, and immunotherapy, and cardiotoxicity, nevertheless there is limited coverage in the different types of cardiac dysfunction that may be associated with these treatments. Moreover, cardiac modeling has a rich heritage of mathematical modeling and is well suited for the further development of novel approaches for understanding the cardiotoxicities associated with cancer therapeutics. There are many opportunities to combine mechanistic, bottom-up approaches with data-driven, top-down approaches to improve personalized, precision oncology to better understand, and ultimately mitigate, cardiac dysfunction in cancer patients.</p></div>\",\"PeriodicalId\":21594,\"journal\":{\"name\":\"Seminars in cancer biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1044579X23001438/pdfft?md5=93f6da9919c765701550a9f17dbddd8a&pid=1-s2.0-S1044579X23001438-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cancer biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044579X23001438\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X23001438","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心脏毒性是许多癌症治疗的常见副作用;然而,迄今为止,对这组病理背后的机制了解甚少。这导致了心脏肿瘤学的出现,这是一个专注于了解癌症及其治疗对人类心脏影响的医学领域。在这里,我们描述了机械建模方法如何应用于研究心血管系统中的开放性问题,以及这些方法如何越来越多地应用于推进癌症治疗对人类心脏的潜在影响的知识。各种机械数学建模技术已被应用于探索常见癌症治疗(如化疗、放疗、靶向治疗和免疫治疗)与心脏毒性之间的联系,然而,对可能与这些治疗相关的不同类型心功能障碍的覆盖有限。此外,心脏建模具有丰富的数学建模遗产,非常适合进一步开发新的方法来理解与癌症治疗相关的心脏毒性。有很多机会将机械自下而上的方法与数据驱动的自上而下的方法结合起来,以提高个性化、精确的肿瘤学,从而更好地了解并最终减轻癌症患者的心功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling of cardio-oncology: Modeling the systemic effects of cancer therapeutics on the cardiovascular system

Cardiotoxicity is a common side-effect of many cancer therapeutics; however, to-date there has been very little push to understand the mechanisms underlying this group of pathologies. This has led to the emergence of cardio-oncology, a field of medicine focused on understanding the effects of cancer and its treatment on the human heart. Here, we describe how mechanistic modeling approaches have been applied to study open questions in the cardiovascular system and how these approaches are being increasingly applied to advance knowledge of the underlying effects of cancer treatments on the human heart. A variety of mechanistic, mathematical modeling techniques have been applied to explore the link between common cancer treatments, such as chemotherapy, radiation, targeted therapy, and immunotherapy, and cardiotoxicity, nevertheless there is limited coverage in the different types of cardiac dysfunction that may be associated with these treatments. Moreover, cardiac modeling has a rich heritage of mathematical modeling and is well suited for the further development of novel approaches for understanding the cardiotoxicities associated with cancer therapeutics. There are many opportunities to combine mechanistic, bottom-up approaches with data-driven, top-down approaches to improve personalized, precision oncology to better understand, and ultimately mitigate, cardiac dysfunction in cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seminars in cancer biology
Seminars in cancer biology 医学-肿瘤学
CiteScore
26.80
自引率
4.10%
发文量
347
审稿时长
15.1 weeks
期刊介绍: Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field. The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies. To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area. The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信