多参数图像细胞术:从共聚焦显微图到亚细胞荧光图

Denis Demandolx, Jean Davoust
{"title":"多参数图像细胞术:从共聚焦显微图到亚细胞荧光图","authors":"Denis Demandolx,&nbsp;Jean Davoust","doi":"10.1002/1361-6374(199709)5:3<159::AID-BIO10>3.0.CO;2-5","DOIUrl":null,"url":null,"abstract":"<p>Multifluorescence labeling is routinely performed to detect the spatial coincidence between several markers within biological specimens. We have recently developed image correlation methods to identify double fluorescent structures by virtue of local similarities between fluorescence distributions. We extend this approach here to analyze statistically the fluorescence distribution of structures of interest on micrographs. This digital cytometry relies mainly on the segmentation of multifluorescence images. Once identified, all objects are analyzed through a range of attributes estimating size, morphology, fluorescence content and mean colocalization level between fluorescence channels. The data sets which are saved in flow cytometry standard (FCS) files, allow multiparameter classification of objects and subpopulation counting. The combination of fluorescence, morphometric and local image correlation attributes has been applied here to compare the frequency of single- and multiple-labeled structures at the subcellular level.</p>","PeriodicalId":100176,"journal":{"name":"Bioimaging","volume":"5 3","pages":"159-169"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1361-6374(199709)5:3<159::AID-BIO10>3.0.CO;2-5","citationCount":"0","resultStr":"{\"title\":\"Multiparameter image cytometry: From confocal micrographs to subcellular fluorograms\",\"authors\":\"Denis Demandolx,&nbsp;Jean Davoust\",\"doi\":\"10.1002/1361-6374(199709)5:3<159::AID-BIO10>3.0.CO;2-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multifluorescence labeling is routinely performed to detect the spatial coincidence between several markers within biological specimens. We have recently developed image correlation methods to identify double fluorescent structures by virtue of local similarities between fluorescence distributions. We extend this approach here to analyze statistically the fluorescence distribution of structures of interest on micrographs. This digital cytometry relies mainly on the segmentation of multifluorescence images. Once identified, all objects are analyzed through a range of attributes estimating size, morphology, fluorescence content and mean colocalization level between fluorescence channels. The data sets which are saved in flow cytometry standard (FCS) files, allow multiparameter classification of objects and subpopulation counting. The combination of fluorescence, morphometric and local image correlation attributes has been applied here to compare the frequency of single- and multiple-labeled structures at the subcellular level.</p>\",\"PeriodicalId\":100176,\"journal\":{\"name\":\"Bioimaging\",\"volume\":\"5 3\",\"pages\":\"159-169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/1361-6374(199709)5:3<159::AID-BIO10>3.0.CO;2-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/1361-6374%28199709%295%3A3%3C159%3A%3AAID-BIO10%3E3.0.CO%3B2-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/1361-6374%28199709%295%3A3%3C159%3A%3AAID-BIO10%3E3.0.CO%3B2-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多荧光标记通常用于检测生物标本中几个标记之间的空间重合。我们最近开发了图像相关方法,利用荧光分布之间的局部相似性来识别双荧光结构。我们在这里扩展了这种方法,以统计分析显微照片上感兴趣的结构的荧光分布。这种数字细胞术主要依赖于多荧光图像的分割。一旦被识别,所有的物体通过一系列属性来分析,估计大小、形态、荧光含量和荧光通道之间的平均共定位水平。数据集保存在流式细胞术标准(FCS)文件中,允许对对象进行多参数分类和亚群计数。结合荧光、形态计量学和局部图像相关属性,在亚细胞水平上比较了单标记和多标记结构的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiparameter image cytometry: From confocal micrographs to subcellular fluorograms

Multifluorescence labeling is routinely performed to detect the spatial coincidence between several markers within biological specimens. We have recently developed image correlation methods to identify double fluorescent structures by virtue of local similarities between fluorescence distributions. We extend this approach here to analyze statistically the fluorescence distribution of structures of interest on micrographs. This digital cytometry relies mainly on the segmentation of multifluorescence images. Once identified, all objects are analyzed through a range of attributes estimating size, morphology, fluorescence content and mean colocalization level between fluorescence channels. The data sets which are saved in flow cytometry standard (FCS) files, allow multiparameter classification of objects and subpopulation counting. The combination of fluorescence, morphometric and local image correlation attributes has been applied here to compare the frequency of single- and multiple-labeled structures at the subcellular level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信