SupraFit -一个开源的基于Qt的拟合应用程序,用于确定滴定实验的稳定性常数

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY
Conrad Hübler
{"title":"SupraFit -一个开源的基于Qt的拟合应用程序,用于确定滴定实验的稳定性常数","authors":"Conrad Hübler","doi":"10.1002/cmtd.202200006","DOIUrl":null,"url":null,"abstract":"<p>A novel application to determine stability constants from supramolecular titration experiments is presented. The focus lies on NMR titration and ITC experiments for pure 1 : 1 systems, as well as mixed 2 : 1/1 : 1, 1 : 1/1 : 2 and 2 : 1/1 : 1/1 : 2 systems. <i>SupraFit</i> provides global and local fitting and a global search tool. Statistical methods are implemented and can be applied to analyse the results of nonlinear regression. Monte Carlo simulations, combined with the percentile methods and F-Test approaches to calculate confidence intervals are supported. The implemented statistical approaches are illustrated and discussed on model functions. All methods are accessible through an intuitive user interface, providing charts for all (kind of) data produced. <i>SupraFit</i> is written in C++, using the Qt Toolkit for the Graphical User Interface (GUI) and the Eigen library for nonlinear regression and is released under the GNU Public License (GPL).</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200006","citationCount":"0","resultStr":"{\"title\":\"SupraFit – An Open Source Qt Based Fitting Application to Determine Stability Constants from Titration Experiments**\",\"authors\":\"Conrad Hübler\",\"doi\":\"10.1002/cmtd.202200006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel application to determine stability constants from supramolecular titration experiments is presented. The focus lies on NMR titration and ITC experiments for pure 1 : 1 systems, as well as mixed 2 : 1/1 : 1, 1 : 1/1 : 2 and 2 : 1/1 : 1/1 : 2 systems. <i>SupraFit</i> provides global and local fitting and a global search tool. Statistical methods are implemented and can be applied to analyse the results of nonlinear regression. Monte Carlo simulations, combined with the percentile methods and F-Test approaches to calculate confidence intervals are supported. The implemented statistical approaches are illustrated and discussed on model functions. All methods are accessible through an intuitive user interface, providing charts for all (kind of) data produced. <i>SupraFit</i> is written in C++, using the Qt Toolkit for the Graphical User Interface (GUI) and the Eigen library for nonlinear regression and is released under the GNU Public License (GPL).</p>\",\"PeriodicalId\":72562,\"journal\":{\"name\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry methods : new approaches to solving problems in chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种从超分子滴定实验中测定稳定常数的新方法。重点进行了纯1:1体系的NMR滴定和ITC实验,以及混合2:1 / 1:1、1:1 / 2:1和2:1 / 1:1 / 2:1体系的NMR滴定和ITC实验。SupraFit提供全局和局部拟合以及全局搜索工具。统计方法的实施,可以应用于分析非线性回归的结果。蒙特卡罗模拟,结合百分位数方法和f检验方法计算置信区间的支持。对实现的统计方法在模型函数上进行了说明和讨论。所有方法都可以通过直观的用户界面访问,为生成的所有(类型)数据提供图表。SupraFit是用c++编写的,使用Qt工具包来实现图形用户界面(GUI)和Eigen库来实现非线性回归,并在GNU公共许可证(GPL)下发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SupraFit – An Open Source Qt Based Fitting Application to Determine Stability Constants from Titration Experiments**

SupraFit – An Open Source Qt Based Fitting Application to Determine Stability Constants from Titration Experiments**

A novel application to determine stability constants from supramolecular titration experiments is presented. The focus lies on NMR titration and ITC experiments for pure 1 : 1 systems, as well as mixed 2 : 1/1 : 1, 1 : 1/1 : 2 and 2 : 1/1 : 1/1 : 2 systems. SupraFit provides global and local fitting and a global search tool. Statistical methods are implemented and can be applied to analyse the results of nonlinear regression. Monte Carlo simulations, combined with the percentile methods and F-Test approaches to calculate confidence intervals are supported. The implemented statistical approaches are illustrated and discussed on model functions. All methods are accessible through an intuitive user interface, providing charts for all (kind of) data produced. SupraFit is written in C++, using the Qt Toolkit for the Graphical User Interface (GUI) and the Eigen library for nonlinear regression and is released under the GNU Public License (GPL).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信