正常但偏斜?

IF 2.3 3区 经济学 Q2 ECONOMICS
Dante Amengual, Xinyue Bei, Enrique Sentana
{"title":"正常但偏斜?","authors":"Dante Amengual,&nbsp;Xinyue Bei,&nbsp;Enrique Sentana","doi":"10.1002/jae.2927","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We propose a multivariate normality test against skew normal distributions using higher-order log-likelihood derivatives, which is asymptotically equivalent to the likelihood ratio but only requires estimation under the null. Numerically, it is the supremum of the univariate skewness coefficient test over all linear combinations of the variables. We can simulate its exact finite sample distribution for any multivariate dimension and sample size. Our Monte Carlo exercises confirm its power advantages over alternative approaches. Finally, we apply it to the joint distribution of US city sizes in two consecutive censuses finding that non-normality is very clearly seen in their growth rates.</p>\n </div>","PeriodicalId":48363,"journal":{"name":"Journal of Applied Econometrics","volume":"37 7","pages":"1295-1313"},"PeriodicalIF":2.3000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normal but skewed?\",\"authors\":\"Dante Amengual,&nbsp;Xinyue Bei,&nbsp;Enrique Sentana\",\"doi\":\"10.1002/jae.2927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We propose a multivariate normality test against skew normal distributions using higher-order log-likelihood derivatives, which is asymptotically equivalent to the likelihood ratio but only requires estimation under the null. Numerically, it is the supremum of the univariate skewness coefficient test over all linear combinations of the variables. We can simulate its exact finite sample distribution for any multivariate dimension and sample size. Our Monte Carlo exercises confirm its power advantages over alternative approaches. Finally, we apply it to the joint distribution of US city sizes in two consecutive censuses finding that non-normality is very clearly seen in their growth rates.</p>\\n </div>\",\"PeriodicalId\":48363,\"journal\":{\"name\":\"Journal of Applied Econometrics\",\"volume\":\"37 7\",\"pages\":\"1295-1313\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jae.2927\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Econometrics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jae.2927","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用高阶对数似然导数提出了一种针对偏正态分布的多元正态性检验,它与似然比渐近等价,但只需要在零下进行估计。在数值上,它是单变量偏度系数检验在所有变量的线性组合上的最大值。我们可以模拟任意多元维数和样本大小的精确有限样本分布。我们的蒙特卡罗练习证实了它比其他方法更强大的优势。最后,我们将其应用于两次连续人口普查中美国城市规模的联合分布,发现其增长率的非常态性非常明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normal but skewed?

We propose a multivariate normality test against skew normal distributions using higher-order log-likelihood derivatives, which is asymptotically equivalent to the likelihood ratio but only requires estimation under the null. Numerically, it is the supremum of the univariate skewness coefficient test over all linear combinations of the variables. We can simulate its exact finite sample distribution for any multivariate dimension and sample size. Our Monte Carlo exercises confirm its power advantages over alternative approaches. Finally, we apply it to the joint distribution of US city sizes in two consecutive censuses finding that non-normality is very clearly seen in their growth rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
63
期刊介绍: The Journal of Applied Econometrics is an international journal published bi-monthly, plus 1 additional issue (total 7 issues). It aims to publish articles of high quality dealing with the application of existing as well as new econometric techniques to a wide variety of problems in economics and related subjects, covering topics in measurement, estimation, testing, forecasting, and policy analysis. The emphasis is on the careful and rigorous application of econometric techniques and the appropriate interpretation of the results. The economic content of the articles is stressed. A special feature of the Journal is its emphasis on the replicability of results by other researchers. To achieve this aim, authors are expected to make available a complete set of the data used as well as any specialised computer programs employed through a readily accessible medium, preferably in a machine-readable form. The use of microcomputers in applied research and transferability of data is emphasised. The Journal also features occasional sections of short papers re-evaluating previously published papers. The intention of the Journal of Applied Econometrics is to provide an outlet for innovative, quantitative research in economics which cuts across areas of specialisation, involves transferable techniques, and is easily replicable by other researchers. Contributions that introduce statistical methods that are applicable to a variety of economic problems are actively encouraged. The Journal also aims to publish review and survey articles that make recent developments in the field of theoretical and applied econometrics more readily accessible to applied economists in general.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信