{"title":"壳聚糖基吸附剂用于分析样品制备和去除水介质中的污染物:进展、挑战和前景","authors":"Muhammad Sajid","doi":"10.1016/j.teac.2022.e00185","DOIUrl":null,"url":null,"abstract":"<div><p><span>The development of greener and more efficient materials for extracting environmental contaminants from various matrices is a growing area of research. Materials that do not cause secondary pollution are highly desirable in such applications. Chitosan (CS) is a non-toxic </span>biopolymer<span><span><span> enriched with amino and hydroxyl groups, used not only for extracting pollutants but also for crosslinking and functionalizing CS with other materials. The composites of CS with carbon, metal-organic frameworks, metal and metal oxide </span>nanoparticles<span>, and magnetic materials have been used to extract various inorganic and organic analytes in aqueous samples. CS-based sorbents have been evaluated across multiple extraction techniques, such as dispersive </span></span>solid phase extraction<span><span>, magnetic solid phase extraction, </span>solid phase microextraction, syringe solid phase extraction, membrane-protected solid phase extraction, and others. This review offers an overview of the CS-based sorbents in analytical extractions, highlighting their strengths, weaknesses, and potential solutions. At the end, a brief overview of the CS-based adsorbents in water treatment applications is also provided.</span></span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00185"},"PeriodicalIF":11.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan-based adsorbents for analytical sample preparation and removal of pollutants from aqueous media: Progress, challenges and outlook\",\"authors\":\"Muhammad Sajid\",\"doi\":\"10.1016/j.teac.2022.e00185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The development of greener and more efficient materials for extracting environmental contaminants from various matrices is a growing area of research. Materials that do not cause secondary pollution are highly desirable in such applications. Chitosan (CS) is a non-toxic </span>biopolymer<span><span><span> enriched with amino and hydroxyl groups, used not only for extracting pollutants but also for crosslinking and functionalizing CS with other materials. The composites of CS with carbon, metal-organic frameworks, metal and metal oxide </span>nanoparticles<span>, and magnetic materials have been used to extract various inorganic and organic analytes in aqueous samples. CS-based sorbents have been evaluated across multiple extraction techniques, such as dispersive </span></span>solid phase extraction<span><span>, magnetic solid phase extraction, </span>solid phase microextraction, syringe solid phase extraction, membrane-protected solid phase extraction, and others. This review offers an overview of the CS-based sorbents in analytical extractions, highlighting their strengths, weaknesses, and potential solutions. At the end, a brief overview of the CS-based adsorbents in water treatment applications is also provided.</span></span></p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"36 \",\"pages\":\"Article e00185\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158822000320\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158822000320","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Chitosan-based adsorbents for analytical sample preparation and removal of pollutants from aqueous media: Progress, challenges and outlook
The development of greener and more efficient materials for extracting environmental contaminants from various matrices is a growing area of research. Materials that do not cause secondary pollution are highly desirable in such applications. Chitosan (CS) is a non-toxic biopolymer enriched with amino and hydroxyl groups, used not only for extracting pollutants but also for crosslinking and functionalizing CS with other materials. The composites of CS with carbon, metal-organic frameworks, metal and metal oxide nanoparticles, and magnetic materials have been used to extract various inorganic and organic analytes in aqueous samples. CS-based sorbents have been evaluated across multiple extraction techniques, such as dispersive solid phase extraction, magnetic solid phase extraction, solid phase microextraction, syringe solid phase extraction, membrane-protected solid phase extraction, and others. This review offers an overview of the CS-based sorbents in analytical extractions, highlighting their strengths, weaknesses, and potential solutions. At the end, a brief overview of the CS-based adsorbents in water treatment applications is also provided.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.